Lipid mediators in the nucleus: Their potential contribution to Alzheimer's disease.

Biochim Biophys Acta

Department of Molecular Cellular Biochemistry, The Ohio State University, Columbus, OH 43221, USA.

Published: August 2010

Degradation of glycerophospholipids, sphingolipids and cholesterol in the nucleus modulates neural cell proliferation and differentiation, inflammation, apoptosis, migration, cell adhesion, and intracellular trafficking. Extracellular signals from agonists (neurotransmitters, cytokines, and growth factors) regulate the activity of a key set of lipid-metabolizing enzymes, such as phospholipases, sphingomyelinases, and cholesterol hydroxylases. These enzymes and their downstream targets constitute a complex lipid signaling network with multiple nodes of interaction and cross-regulation through their lipid mediators, which include eicosanoids, docosanoids, diacylglycerols, platelet activating factor, lysophosphatidic acid, ceramide and ceramide 1-phosphate, sphingosine and sphingosine 1-phosphate, and hydroxycholesterols. Receptors for above lipid mediators are localized at the neural cell nucleus. Stimulation of isolated nuclei with these lipids and agonists results in changes in transcriptional regulation of major genes, including c-fos, cylooxygenase-2, secretory phospholipase A(2) and endothelial as well as inducible nitric oxide synthases. Imbalances in signaling network involving above genes may contribute to the pathogenesis of human neurological disorders. In this review, we have attempted to integrate available information on above lipid mediators in the nucleus. In addition, attempts have been made to explain cross-talk among glycerophospholipid-, sphingolipid-, and cholesterol-derived lipid mediators in neural cell death in Alzheimer's disease.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bbalip.2010.02.002DOI Listing

Publication Analysis

Top Keywords

lipid mediators
20
neural cell
12
mediators nucleus
8
alzheimer's disease
8
signaling network
8
lipid
6
nucleus
4
nucleus potential
4
potential contribution
4
contribution alzheimer's
4

Similar Publications

MAPK-CncC Signaling Pathways Regulate the Antitoxic Response to Avermectin-Induced Oxidative Stress in Juvenile Chinese Mitten Crab, .

Environ Sci Technol

January 2025

Key Laboratory of Application of Ecology and Environmental Protection in Plateau Wetland of Sichuan, Xichang University, Xichang 415000 Sichuan Province, China.

This study delves into the adverse effects of AVM, emphasizing oxidative stress induction in the Chinese mitten crab, , and the role of the MAPK-CncC signaling pathway in mediating the antioxidative response. Our findings reveal a dose-dependent impairment in growth performance, alongside occurrence of oxidative stress. The activity of CAT and superoxide dismutase increased significantly in all treatments (0.

View Article and Find Full Text PDF

In recent decades, researchers and clinicians have increasingly focused on glial cell function. One of the primary mechanisms influencing these functions is through extracellular vesicles (EVs), membrane-bound particles released by cells that are essential for intercellular communication. EVs can be broadly categorized into four main types based on their size, origin, and biogenesis: large EVs, small EVs (sEVs), autophagic EVs, and apoptotic bodies.

View Article and Find Full Text PDF

Background: Epoxyeicosatrienoic acids (EETs) are closely associated with lipoprotein metabolism, and changes in lipid profiles potentially affect their levels and functions. Given the alterations in lipid metabolism after cholecystectomy, this study aimed to investigate the levels of four EET regioisomers (free and esterified) and lipid profiles in patients with cholelithiasis after laparoscopic cholecystectomy (LC) and explore correlations between these parameters.

Methods: This prospective study involved 40 patients with symptomatic cholelithiasis who underwent LC.

View Article and Find Full Text PDF

Self-transmissible IncC plasmids rapidly spread multidrug resistance in many medically important pathogens worldwide. A large plasmid of this type (pIP1202, ~80 Kb) has been isolated in a clinical isolate of , the agent of plague. Here, we report that pIP1202 was highly stable in infected mice and fleas and did not reduce virulence in these animals.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!