The purpose of this study was to determine whether hypermnesia (improved net recall over time) can be differentially affected by manipulating the nature of tasks performed during the intervals between successive recall trials. In Experiment 1, all subjects were asked to imaginally encode separate words and were tested three times for recall. The control group (no interpolated task) produced the hypermnesia effect. Both groups performing interpolated tasks showed significantly lower recall. A second experiment was conducted in order to replicate these results and to examine the effects of intertest rehearsal on hypermnesia. In Experiment 2, subjects were asked to encode pairs of words using interactive-imagery instructions. Six different interpolated task conditions were employed, varying in the degree to which subsystems of working memory were used. Groups performing imaginal interpolated tasks showed no hypermnesia, whereas those performing nonimaginal tasks did. These findings suggest that access to working memory (see Baddeley, 1986) is not necessary for hypermnesia.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.3758/bf03198499 | DOI Listing |
Biomed Phys Eng Express
January 2025
Shandong University, No. 72, Binhai Road, Jimo, Qingdao City, Shandong Province, Qingdao, 266200, CHINA.
U-Net is widely used in medical image segmentation due to its simple and flexible architecture design. To address the challenges of scale and complexity in medical tasks, several variants of U-Net have been proposed. In particular, methods based on Vision Transformer (ViT), represented by Swin UNETR, have gained widespread attention in recent years.
View Article and Find Full Text PDFJ Imaging Inform Med
January 2025
School of Electronic and Information Engineering, Beijing Jiaotong University, Beijing, China.
While radiation hazards induced by cone-beam computed tomography (CBCT) in image-guided radiotherapy (IGRT) can be reduced by sparse-view sampling, the image quality is inevitably degraded. We propose a deep learning-based multi-view projection synthesis (DLMPS) approach to improve the quality of sparse-view low-dose CBCT images. In the proposed DLMPS approach, linear interpolation was first applied to sparse-view projections and the projections were rearranged into sinograms; these sinograms were processed with a sinogram restoration model and then rearranged back into projections.
View Article and Find Full Text PDFNeural Netw
January 2025
School of Artificial Intelligence, Beijing University of Posts and Telecommunications, Beijing, 100876, China. Electronic address:
For imbalanced classification problem, algorithm-level methods can effectively avoid the information loss and noise introduction of data-level methods. However, the differences in the characteristics of the datasets, such as imbalance ratio, data dimension, and sample distribution, make it difficult to determine the optimal parameters of the algorithm-level methods, which leads to low universality. This paper proposes a meta-learning imbalanced classification framework via boundary enhancement strategy with Bayes imbalance impact index.
View Article and Find Full Text PDFComput Methods Programs Biomed
January 2025
College of Medical Instruments, Shanghai University of Medicine and Health Sciences, Shanghai, 201318, PR China; Shanghai Yangpu Mental Health Center, Shanghai, 200093, PR China. Electronic address:
Background And Objective: The hybrid brain computer interfaces (BCI) combining electroencephalogram (EEG) and functional near-infrared spectroscopy (fNIRS) have attracted extensive attention for overcoming the decoding limitations of the single-modality BCI. With the deepening application of deep learning approaches in BCI systems, its significant performance improvement has become apparent. However, the scarcity of brain signal data limits the performance of deep learning models.
View Article and Find Full Text PDFNeurocomputing (Amst)
January 2025
Department of Electrical and Computer Engineering, University of Maryland at College Park, 8223 Paint Branch Dr, College Park, MD, 20740, USA.
Inference using deep neural networks on mobile devices has been an active area of research in recent years. The design of a deep learning inference framework targeted for mobile devices needs to consider various factors, such as the limited computational capacity of the devices, low power budget, varied memory access methods, and I/O bus bandwidth governed by the underlying processor's architecture. Furthermore, integrating an inference framework with time-sensitive applications - such as games and video-based software to perform tasks like ray tracing denoising and video processing - introduces the need to minimize data movement between processors and increase data locality in the target processor.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!