AI Article Synopsis

  • The study by Marsh and McCaffery explores how populations and temperatures of excited CO molecule states change as they interact with different bath gases (Ar, N2, O2, CO) at 300 K.
  • It examines the dynamics of relaxation to thermal equilibrium, highlighting distinct phases of cooling and particularly fast vibration-vibration (VV) energy exchange in CO-CO mixes that are mostly independent of other modes of motion.
  • The findings suggest a unique energy transfer process that may explain rapid relaxation or energy pumping observed in various experiments.

Article Abstract

The method of Marsh and McCaffery [J. Chem. Phys. 117, 503 (2002)] is used to quantify how rovibrational populations and mode temperatures change as an ensemble of CO molecules, initially excited to (v;j)=(8;12), evolves to thermal equilibrium in a bath gas. The bath gases considered are Ar, N(2), O(2), and CO all at 300 K with the diatomics in their (0;8) rovibrational states. Ensembles generally contain 1000 molecules, 10% of which are excited CO (CO( *)) molecules. State (v;j) populations and mode temperatures of CO* and bath molecules are calculated for successive collisions to 1000 or more. We find that relaxation to local thermodynamic equilibrium occurs in distinct phases that vary widely in rate of cooling. There is especially fast vibration-vibration (VV) exchange in CO*-CO mixtures that is largely decoupled from rotation and translation. Several aspects of ensemble behavior may be rationalized using concepts established in quantum state resolved single collision studies. We demonstrate the existence of a simultaneous energy quasiresonant, angular momentum conserving, low Deltaj VV process that can cause either ultrafast relaxation or up pumping of the kind seen in a number of experiments.

Download full-text PDF

Source
http://dx.doi.org/10.1063/1.3319756DOI Listing

Publication Analysis

Top Keywords

quantum state
8
state populations
8
populations mode
8
mode temperatures
8
modeling disequilibrium
4
disequilibrium gas
4
gas ensembles
4
ensembles quantum
4
populations evolve
4
evolve multicollision
4

Similar Publications

Menthol is a naturally occurring cyclic terpene alcohol and is the major component of peppermint and corn mint essential oils extracted from Mentha piperita L. and Mentha arvensis L..

View Article and Find Full Text PDF

Efflux pumps that transport antibacterial drugs out of bacterial cells have broad specificity, commonly leading to broad spectrum resistance and limiting treatment strategies for infections. It remains unclear how efflux pumps can maintain this broad spectrum specificity to diverse drug molecules while limiting the efflux of other cytoplasmic content. We have investigated the origins of this broad specificity using theoretical models informed by the experimentally determined structural and kinetic properties of efflux pumps.

View Article and Find Full Text PDF

SiO-Mediated Hydrothermal Synthesis of Spiroffite-Type CoTeO.

Inorg Chem

January 2025

Department of Chemistry, The Johns Hopkins University, Baltimore, Maryland 21218, United States.

The hydrothermal synthesis of novel materials typically relies on both knowledge of the redox activities of all cations present in the reaction solution and a small toolset of so-called mineralizers to tune the solution's overall chemical potential. Upon the use of a less conventional mineralizer species, SiO, we show the stabilization of spiroffite-type CoTeO under less forceful hydrothermal conditions than those in previous reports. When synthesized in the presence of both SiO and each respective alkali carbonate as a secondary mineralizer, silicon substitution in place of tellurium in the host structure becomes apparent, and the corresponding disorder introduced gives rise to enhanced low-temperature ferromagnetism.

View Article and Find Full Text PDF

Graphene quantum dots (GQDs) have emerged as promising materials for electrochemiluminescence (ECL) applications due to their unique optical and electronic properties. In this study, GQDs were synthesized via electrochemical exfoliation of graphite in a constant current density mode, enabling scalable production with controlled size and surface functionalization. GQDs-4 and GQDs-20, synthesized at applied current densities of 4 mA/cm2 and 20 mA/cm2 to the graphite electrode, respectively, were investigated on roles of surface states and exciplex dominated aggregation-induced emission (AIE) in their ECL performance.

View Article and Find Full Text PDF

Deep Learning of CYP450 Binding of Small Molecules by Quantum Information.

J Chem Inf Model

January 2025

Industrial and Molecular Pharmaceutics, Purdue University, West Lafayette, Indiana 47907, United States.

Drug-drug interaction can lead to diminished therapeutic effects or increased toxicity, posing significant risks, especially in polypharmacy, and cytochrome P450 plays an indispensable role in this interaction. Cytochrome P450, responsible for the metabolism and detoxification of most drugs, metabolizes about 90% of Food and Drug Administration-approved drugs, making early detection of potential drug-drug interactions. Over the years, in-silico modeling has become a valuable tool for predicting drug-drug interactions.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!