The purposes of our studies are to examine whether or not fractal-feature distance deduced from virtual volume method can simulate observer performance indices and to investigate the physical meaning of pseudo fractal dimension and complexity. Contrast-detail (C-D) phantom radiographs were obtained at various mAs values (0.5 - 4.0 mAs) and 140 kVp with a computed radiography system, and the reference image was acquired at 13 mAs. For all C-D images, fractal analysis was conducted using the virtual volume method that was devised with a fractional Brownian motion model. The fractal-feature distances between the considered and reference images were calculated using pseudo fractal dimension and complexity. Further, we have performed the C-D analysis in which ten radiologists participated, and compared the fractal-feature distances with the image quality figures (IQF). To clarify the physical meaning of the pseudo fractal dimension and complexity, contrast-to-noise ratio (CNR) and standard deviation (SD) of images noise were calculated for each mAs and compared with the pseudo fractal dimension and complexity, respectively. A strong linear correlation was found between the fractal-feature distance and IQF. The pseudo fractal dimensions became large as CNR increased. Further, a linear correlation was found between the exponential complexity and image noise SD.

Download full-text PDF

Source
http://dx.doi.org/10.1007/BF03179238DOI Listing

Publication Analysis

Top Keywords

pseudo fractal
24
fractal dimension
20
dimension complexity
20
fractal-feature distance
12
meaning pseudo
12
virtual volume
8
volume method
8
physical meaning
8
fractal-feature distances
8
linear correlation
8

Similar Publications

This study reported a one-spot preparation of magnetic composite carbon (MCC@Fe) from microcrystalline cellulose (MC). The pure cellulose was impregnated in iron (III) chloride solution and carbonized at 650 °C. The MCC@Fe composite adsorbent underwent various characterization techniques.

View Article and Find Full Text PDF

This study aims to develop a stable and efficient magnetic nanocomposite hydrogel (MNCH) for selective removal of methylene blue (MB) and crystal violet (CV). MNCHs with different FeO contents (0-9 wt%) were synthesized following graft co-polymerization method using sodium alginate, acrylamide, itaconic acid, ammonium persulfate and N,N-methylene bisacrylamide. Among them, MNCH, with 5 wt% FeO, showed highest removal efficiency (>95 %).

View Article and Find Full Text PDF

Exploring the interactions of glyphosate in soil: the sorption scenario upon soil depletion and effect on waterleaf () growth.

Environ Sci Process Impacts

November 2024

Institute of Soil Science and Soil Conservation, Research Centre for BioSystems, Land Use and Nutrition (iFZ), Justus Liebig University Giessen, Heinrich-Buff-Ring 26, 35392 Giessen, Germany.

The pesticide glyphosate has contributed immensely to the ease of farming and high yields. However, the ever-increasing environmental input of pesticides is of particular interest due to several unintended effects on non-target organisms. In soil, the sorption, transport, possible uptake, and effect on plant growth are still not well understood, and much so for the sub-Sahara.

View Article and Find Full Text PDF

The removal of Sunset Yellow (E110) on natural zeolite and zeolite modified with the cationic surfactant cetyl pyridinium chloride (CPC) was studied using the adsorption method. The structural characteristics of the surfactant-modified zeolite (SMZ-CPC) were investigated using X-ray diffraction(XRD), Fourier transform infrared spectroscopy (FTIR), Brunauer-Emmett-Teller (BET) analysis, and the scanning electron microscopy (SEM) images. The effect of different parameters on the adsorption process, such as equilibration time and amount of adsorbent at 298 K, were determined using UV-Vis spectroscopy.

View Article and Find Full Text PDF

The presence of antibiotics in water sources is a significant concern due to their potential environmental impact and the risks to human health. In the present research, hierarchically mesoporous UiO-66 (HP-UiO-66) with a high surface area (1011 m/g) and large pore volume was synthesized using the reflux method on the liter scale. The successful synthesis was confirmed by FT-IR, XRD, FESEM/EDS, N-adsorption/desorption, and zeta potential techniques.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!