Amyotrophic lateral sclerosis (ALS) is a disease of the central nervous system characterized by loss of spinal motor neurons, for which no effective treatment exists. Epidermal growth factor (EGF) and growth hormone releasing peptide-6 (GHRP-6) have been considered as good candidates for the treatment of this disease, due to their well documented effects in eliciting pleiotrophic and cell survival mechanisms. The aim of the present work was to evaluate the separate and combined effects of both peptides in an experimental animal model of ALS, the proximal axonopathy induced by 1,2 diacetylbenzene (1,2 DAB) in mice. The evaluations were conducted by means of behavioral tests (trapeze, tail suspension, gait pattern, and open field) and by recording the complex muscle action potential (CMAP) in three different hind limb segments: proximal S1, medial S2, and distal S3. Intraperitoneal daily administration of 1,2 DAB produced significant reduction in body weight, muscle strength, extensor reflex, spontaneous activity, and changes in gait pattern parameters. In parallel 1,2 DAB produced significant prolongation of onset latency and decrease in amplitude of CMAP and in the integrated complex action potential index. Daily administration of the separate compounds did not accelerate the recovery of the affected parameters, except for the gait pattern. The combined treatment produced significant improvement in behavioral parameters, as well as in electrophysiological recovery, particularly in the proximal segment of CMAP. The latter results confirm the proximal character of 1,2 DAB neuropathy, and suggest that combined therapy with EGF and GHRP-6 might be a good therapeutic strategy for the treatment of ALS.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s12640-010-9160-8DOI Listing

Publication Analysis

Top Keywords

gait pattern
12
growth hormone
8
hormone releasing
8
releasing peptide-6
8
epidermal growth
8
growth factor
8
action potential
8
daily administration
8
dab produced
8
therapeutic combined
4

Similar Publications

Background: Hip morphology variations, particularly in femoral neck shaft angle (NSA) and iliac wing width (IWW), have been associated with gluteal tendinopathy. However, the biomechanical implications of these morphological differences on gluteal muscle function are not well understood. This study investigates how NSA and IWW influence gluteal muscle forces, moment arms, and estimated tendon loads during walking, aiming to provide insights into the potential biomechanical pathways that may contribute to altered lateral hip loading patterns.

View Article and Find Full Text PDF

Enhancing gait mechanics: The effectiveness of a novel walking aid.

J Orthop Sci

January 2025

Department of Orthopaedic Surgery, Wakayama Medical University, 811-1 Kimiidera, Wakayama City, Wakayama, 641-8509, Japan.

Background: A walking support orthosis known as the e-foot®, a rubber orthotic worn from the hip to the forefoot to enhance joint flexibility and movement, has been developed to assist elderly people and individuals with walking impairments. Despite its widespread acceptance and positive reception in some care settings, the precise impact of this device on gait dynamics remains unexplored. This study aims to bridge this gap by comparing the walking speeds of healthy volunteers using the e-foot® against their normal walking speeds.

View Article and Find Full Text PDF

Methylenetetrahydrofolate reductase (MTHFR) deficiency is a rare autosomal recessive genetic disorder caused by mutations in the gene, leading to a variety of clinical manifestations. In October 2022, the Second Xiangya Hospital of Central South University admitted a 21-year-old male patient with neuropsychiatric disorders, presenting primarily with cognitive decline, limb tremors, abnormal mental and behavioral symptoms, seizures, and gait disturbances. These symptoms had gradually developed over 5 years, worsening significantly in the past year.

View Article and Find Full Text PDF

Duchenne gait, characterized by an ipsilateral trunk lean towards the affected stance limb, compensates for weak hip abductor muscles, notably the gluteus medius (GM). This study aims to investigate how electromyographic (EMG) cluster analysis of GM contributes to a better understanding of Duchenne gait in patients with cerebral palsy (CP). We analyzed retrospective gait data from 845 patients with CP and 65 typically developed individuals.

View Article and Find Full Text PDF

Among control methods for robotic exoskeletons, biologically inspired control based on central pattern generators (CPGs) offer a promising approach to generate natural and robust walking patterns. Compared to other approaches, like model-based and machine learning-based control, the biologically inspired control provides robustness to perturbations, requires less computational power, and does not need system models or large learning datasets. While it has shown effectiveness, a comprehensive evaluation of its user experience is lacking.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!