Design of a trichromatic cone array.

PLoS Comput Biol

Department of Psychology, Saint Joseph's University, Philadelphia, Pennsylvania, USA.

Published: February 2010

Cones with peak sensitivity to light at long (L), medium (M) and short (S) wavelengths are unequal in number on the human retina: S cones are rare (<10%) while increasing in fraction from center to periphery, and the L/M cone proportions are highly variable between individuals. What optical properties of the eye, and statistical properties of natural scenes, might drive this organization? We found that the spatial-chromatic structure of natural scenes was largely symmetric between the L, M and S sensitivity bands. Given this symmetry, short wavelength attenuation by ocular media gave L/M cones a modest signal-to-noise advantage, which was amplified, especially in the denser central retina, by long-wavelength accommodation of the lens. Meanwhile, total information represented by the cone mosaic remained relatively insensitive to L/M proportions. Thus, the observed cone array design along with a long-wavelength accommodated lens provides a selective advantage: it is maximally informative.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2820519PMC
http://dx.doi.org/10.1371/journal.pcbi.1000677DOI Listing

Publication Analysis

Top Keywords

design trichromatic
4
trichromatic cone
4
cone array
4
array cones
4
cones peak
4
peak sensitivity
4
sensitivity light
4
light long
4
long medium
4
medium short
4

Similar Publications

Introduction: Human color vision exhibits significant diversity that cannot be fully explained by categorical classifications. Understanding how individuals with different color vision phenotypes perceive, recognize, and react to the same physical stimuli provides valuable insights into sensory characteristics. This study aimed to identify behavioral and neural differences between different color visions, primarily classified as typical trichromats and anomalous trichromats, in response to two chromatic stimuli, blue-green and red, during an attention-demanding oddball task.

View Article and Find Full Text PDF

The ability to perceive color by the retina can be attributed to both its trichromatic photoreceptors and the antagonistic neural wiring known as the opponent process. While neuromorphic sensors have been shown to demonstrate memory and adaptation capabilities, color perception is still challenging due to the intrinsic lack of spectral selectivity in narrow bandgap semiconductors. Furthermore, research on emulating neural wiring is severely lacking.

View Article and Find Full Text PDF

EnChroma filters are aids designed to improve color vision for anomalous trichromats. Their use is controversial because the results of lab-based assessments of their effectiveness have so far largely failed to agree with positive anecdotal reports. However, the effectiveness of EnChroma filters will vary depending on the conditions of viewing, including whether the stimuli are broadband reflective surfaces or colors presented on RGB displays, whether illumination spectra are broadband or narrowband, the transmission spectra of particular filters, and the cone spectral sensitivity functions of the observer.

View Article and Find Full Text PDF

Humans exhibit colour vision variations due to genetic polymorphisms, with trichromacy being the most common, while some people are classified as dichromats. Whether genetic differences in colour vision affect the way of viewing complex images remains unknown. Here, we investigated how people with different colour vision focused their gaze on aesthetic paintings by eye-tracking while freely viewing digital rendering of paintings and assessed individual impressions through a decomposition analysis of adjective ratings for the images.

View Article and Find Full Text PDF

The optimization of trichromatic white light emitting diodes (LEDs) spectrum for application scenes related to the age of lighting users is proposed and demonstrated. Based on the spectral transmissivity of human eyes at different ages, the visual and non-visual responses of human eyes to different wavelengths of light, we have built the blue light hazards (BLH) and circadian action factor (CAF) related to the age of the lighting user. The BLH and CAF are used to evaluate the spectral combinations of high color rendering index (CRI) white LEDs obtained from different radiation flux ratios of red, green, and blue monochrome spectrum.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!