Recombination, together with mutation, generates the raw material of evolution, is essential for reproduction and lies at the heart of all genetic analysis. Recent advances in our ability to construct genome-scale, high-resolution recombination maps and new molecular techniques for analysing recombination products have substantially furthered our understanding of this important biological phenomenon in humans and mice: from describing the properties of recombination hot spots in male and female meiosis to the recombination landscape along chromosomes. This progress has been accompanied by the identification of trans-acting systems that regulate the location and relative activity of individual hot spots.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4389181 | PMC |
http://dx.doi.org/10.1038/nrg2712 | DOI Listing |
Nano Lett
January 2025
Department of Energy and Resources Engineering, College of Engineering, Peking University, Beijing 100871, P. R. China.
As one of the most important physical fields for battery operation, the regulatory effect of temperature on the growth of lithium dendrites should be studied. In this paper, we develop an optimized phase field model to explore the effect of temperature on the growth of Li dendrites in Li metal batteries. We incorporated full lithium deposition kinetics, including atom diffusion and solid electrolyte interface restriction on interface kinetics, into the model and revealed their significance in determining the transformation of the lithium deposition morphology from moss-like to dendrite-like.
View Article and Find Full Text PDFJACS Au
January 2025
School of Chemical & Biomolecular Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States.
Mechanochemistry and mechanocatalysis are gaining increasing attention as environmentally friendly chemical processes because of their solvent-free nature and scalability. Significant effort has been devoted for studying continuum-scale phenomena in mechanochemistry, such as temperature and pressure gradients, but the atomic-scale mechanisms remain relatively unexplored. In this work, we focus on the mechanochemical reduction of MoO as a case study.
View Article and Find Full Text PDFChem Sci
January 2025
Department of Chemistry, National Institute of Technology Rourkela - 769008 Odisha India +91-661-2462651 +91-661-2462980.
The self-assembled ferritin protein nanocage plays a pivotal role during oxidative stress, iron metabolism, and host-pathogen interaction by executing rapid iron uptake, oxidation and its safe-storage. Self-assembly creates a nanocompartment and various pores/channels for the uptake of charged substrates (Fe) and develops a concentration gradient across the protein shell. This phenomenon fuels rapid ferroxidase activity by an upsurge in the substrate concentration at the catalytic sites.
View Article and Find Full Text PDFHum Vaccin Immunother
December 2025
School of Clinical Traditional Chinese Medicine, Hubei University of Chinese Medicine, Wuhan, China.
The emergence of immuno-oncology (IO) has led to revolutionary changes in the field of cancer treatment. Despite notable advancements in this field, a thorough exploration of its full depth and extent has yet to be performed. This study provides a comprehensive overview of publications pertaining to IO.
View Article and Find Full Text PDFJMIRx Med
January 2025
Department of Biochemistry and Medical Genetics, Cancer Center, University of Illinois Chicago, 900 s Ashland, Chicago, IL, 60617, United States, 1 8479124216.
Background: The causes of breast cancer are poorly understood. A potential risk factor is Epstein-Barr virus (EBV), a lifelong infection nearly everyone acquires. EBV-transformed human mammary cells accelerate breast cancer when transplanted into immunosuppressed mice, but the virus can disappear as malignant cells reproduce.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!