Radiation exposure of patients and personnel from a PET/CT procedure with 18F-FDG.

Radiat Prot Dosimetry

Medical Radiation Physics, Department of Clinical Sciences Malmö, Lund University, Malmö, Sweden.

Published: August 2010

The positron emission tomography (PET)/computed tomography (CT) camera is a combination of a PET camera and a CT. The image from the PET camera is based on the detection of radiation that is emitted from a radioactive tracer, which has been given to the patient as an intravenous injection. The radiation that is emitted from the radioactive tracer is more energetic than any other radiation used in medical diagnostic procedures and this requires special radiation protection routines. The CT image is based on the detection of radiation produced from an X-ray tube and transmitted through the patient. The radiation exposure of the personnel during the CT procedure is generally very low. Regarding radiation exposure of the patient, it is important to notice whether a CT scan has been performed prior to the PET/CT in order to avoid any unnecessary irradiation. The total effective dose to the patient from a PET/CT procedure is approximately 10 mSv. The major part comes from internal irradiation due to radiopharmaceuticals within the patients (e.g. (18)F-FDG: approximately 6-7 mSv), and a minor part is due to the CT scan (low-dose CT scan: approximately 2-4 mSv). If a full diagnostic CT investigation is performed, the effective dose may be considerably higher. If the patient is pregnant, a PET/CT procedure should be avoided or postponed, unless it is vital for the patient. An interruption in breastfeeding is not necessary after a PET/CT procedure of the nursing mother. Close contact between the patient and a small child should however be avoided for a couple of hours after the administration of the radiopharmaceutical. The radiation dose to the personnel arises mainly due to handling of the radiopharmaceuticals (syringe withdrawal, injection, waste handling, etc.) and from close contact to the patient. This radiation dose can be limited by using the inverse-square law, i.e. by using the fact that the absorbed dose decreases substantially with increasing distance between the radiation source and the personnel.

Download full-text PDF

Source
http://dx.doi.org/10.1093/rpd/ncq026DOI Listing

Publication Analysis

Top Keywords

pet/ct procedure
16
radiation exposure
12
radiation
11
pet camera
8
based detection
8
detection radiation
8
radiation emitted
8
emitted radioactive
8
radioactive tracer
8
patient
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!