Antibiotics with new mechanisms of action are urgently required to combat the growing health threat posed by resistant pathogenic microorganisms. We synthesized a family of peptidomimetic antibiotics based on the antimicrobial peptide protegrin I. Several rounds of optimization gave a lead compound that was active in the nanomolar range against Gram-negative Pseudomonas spp., but was largely inactive against other Gram-negative and Gram-positive bacteria. Biochemical and genetic studies showed that the peptidomimetics had a non-membrane-lytic mechanism of action and identified a homolog of the beta-barrel protein LptD (Imp/OstA), which functions in outer-membrane biogenesis, as a cellular target. The peptidomimetic showed potent antimicrobial activity in a mouse septicemia infection model. Drug-resistant strains of Pseudomonas are a serious health problem, so this family of antibiotics may have important therapeutic applications.

Download full-text PDF

Source
http://dx.doi.org/10.1126/science.1182749DOI Listing

Publication Analysis

Top Keywords

peptidomimetic antibiotics
8
outer-membrane biogenesis
8
antibiotics target
4
target outer-membrane
4
biogenesis pseudomonas
4
pseudomonas aeruginosa
4
aeruginosa antibiotics
4
antibiotics mechanisms
4
mechanisms action
4
action urgently
4

Similar Publications

Glucagon-like peptide-1 (GLP-1) receptor is currently one of the most explored targets exploited for the management of diabetes and obesity, with many aspects of its mechanisms behind cardiovascular protection yet to be fully elucidated. Research dedicated towards the development of oral GLP-1 therapy and non-peptide ligands with broader clinical applications is crucial towards unveiling the full therapeutic capacity of this potent class of medicines. This study describes the virtual screening of a natural product database consisting of 695,133 compounds for positive GLP-1 allosteric modulation.

View Article and Find Full Text PDF
Article Synopsis
  • The rise of multidrug-resistant bacteria highlights the urgent need for new antimicrobial medicines, leading to the investigation of antimicrobial peptoids as potential alternatives.
  • Thirteen peptoid analogues were synthesized with varying alkyl side chains to analyze their antibacterial properties, and only one, called Tosyl-Octyl-Peptoid (TOP), showed significant broad-spectrum bactericidal activity.
  • TOP effectively kills bacteria in both dividing and non-dividing states, demonstrating promising minimum inhibitory concentrations and a high selectivity ratio, suggesting its potential as a future therapeutic option against resistant infections.
View Article and Find Full Text PDF

Recent advances in peptide macrocyclization strategies.

Chem Soc Rev

December 2024

Department of Chemistry, Hong Kong Baptist University, Kowloon Tong, Kowloon, Hong Kong SAR, P. R. China.

Recently, owing to their special spatial structures, peptide-based macrocycles have shown tremendous promise and aroused great interest in multidisciplinary research ranging from potent antibiotics against resistant strains to functional biomaterials with novel properties. Besides traditional monocyclic peptides, many fascinating polycyclic and remarkable higher-order cyclic, spherical and cylindric peptidic systems have come into the limelight owing to breakthroughs in various chemical (, native chemical ligation and transition metal catalysis), biological (, post-translational enzymatic modification and genetic code reprogramming), and supramolecular (, mechanically interlocked, metal-directed folding and self-assembly noncovalent interactions) macrocyclization strategies developed in recent decades. In this tutorial review, diverse state-of-the-art macrocyclization methodologies and techniques for peptides and peptidomimetics are surveyed and discussed, with insights into their practical advantages and intrinsic limitations.

View Article and Find Full Text PDF

Recent advances in peptoids as promising antimicrobial agents to target diverse microbial species.

Eur J Med Chem

December 2024

Key Laboratory for Green Chemical Process of Ministry of Education, Wuhan Institute of Technology 206 1st Rd Optics Valley, East Lake New Technology Development District, Wuhan, Hubei, 430205, China; Hubei Key Laboratory of Novel Reactor and Green Chemical Technology, Wuhan Institute of Technology 206 1st Rd Optics Valley, East Lake New Technology Development District, Wuhan, Hubei 430205, China; Hubei Engineering Research Center for Advanced Fine Chemicals, Wuhan Institute of Technology 206 1st Rd Optics Valley, East Lake New Technology Development District, Wuhan, Hubei, 430205, China; School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology 206 1st Rd Optics Valley, East Lake New Technology Development District, Wuhan, Hubei, 430205, China. Electronic address:

The emergence of multidrug-resistant microbial species has become a global health concern, calling for novel antimicrobial agents. Peptoids, a class of synthetic peptidomimetics with unique structural properties, exhibit antimicrobial activity against a broad-spectrum of microbes, in addition to their stability to enzymatic degradation, selectivity, and relative ease of synthesis. Thus, peptoids have great potential in combating various drug-resistant pathogenic microbes.

View Article and Find Full Text PDF

Sortase A (SrtA) of has long been shown to be a relevant molecular target for antibacterial development. Moreover, the designed SrtA inhibitors act via the antivirulence mechanism, potentially causing less evolutional pressure and reduced antimicrobial resistance. However, no marketed drugs or even drug candidates have been reported until recently, despite numerous efforts in the field.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!