Role of the adaptive immune system in hypertension.

Curr Opin Pharmacol

Department of Medicine, Division of Cardiology, Emory University School of Medicine, Atlanta, GA 30345, USA.

Published: April 2010

Recent studies have shown that both innate and adaptive immunity contribute to hypertension. Inflammatory cells, including macrophages and T cells accumulate in the vessel wall, particularly in the perivascular fat, and in the kidney of hypertensive animals. Mice lacking lymphocytes are resistant to the development of hypertension, and adoptive transfer of T cells restores hypertensive responses to angiotensin II and DOCA-salt challenge. Immune modulating agents have variable, but often-beneficial effects in ameliorating end-organ damage and blood pressure elevation in experimental hypertension. The mechanisms by which hypertension stimulates an immune response remain unclear, but might involve the formation of neoantigens that activate adaptive immunity. Identification of these neoantigens and understanding how they form might prove useful in the prevention and treatment of this widespread and devastating disease.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2843787PMC
http://dx.doi.org/10.1016/j.coph.2010.01.006DOI Listing

Publication Analysis

Top Keywords

adaptive immunity
8
hypertension
5
role adaptive
4
adaptive immune
4
immune system
4
system hypertension
4
hypertension studies
4
studies innate
4
innate adaptive
4
immunity contribute
4

Similar Publications

Metabolic dysfunction-associated steatohepatitis (MASH) is characterized by severe liver inflammation and fibrosis due to an imbalanced immune response caused by enhanced bacterial components. The progression of MASH is closely linked to increased permeability of intestinal mucosal barrier facilitating enter of bacterial components into hepatic portal venous system. B cells are important immune cells for adaptive responses and enhance hepatic inflammation through cytokine production and T cell activation.

View Article and Find Full Text PDF

A responsive cocktail nano-strategy breaking the immune excluded state enhances immunotherapy for triple negative breast cancer.

Nanoscale

January 2025

Department of Oncology, Shanghai East Hospital, School of Medicine, Shanghai Key Laboratory of Chemical Assessment and Sustainability, School of Chemical Science and Engineering, Tongji University, Shanghai 200092, China.

The exclusion of immune cells from the tumor can limit the effectiveness of immunotherapy in triple negative breast cancer (TNBC). The cyclic GMP-AMP synthase-stimulator of interferon genes (cGAS-STING) pathway plays a crucial role in priming adaptive anti-tumor immunity through the production of type I interferons (IFNs), facilitating the maturation of dendritic cells (DCs) and the function of T cells. Although the increased expression of programmed death-ligand 1 (PD-L1) upon STING activation is favorable for amplifying the efficacy of immune checkpoint inhibitors (ICIs) and realizing combination therapy, the penetration barrier remains a major obstacle.

View Article and Find Full Text PDF

Adoptive cell therapy with tumor-infiltrating lymphocytes (TIL) can mediate tumor regression, including complete and durable responses, in a range of solid cancers, most notably in melanoma. However, its wider application and efficacy has been restricted by the limited accessibility, proliferative capacity and effector function of tumor-specific TIL. Here, we develop a platform for the efficient identification of tumor-specific TCR genes from diagnostic tumor biopsies, including core-needle biopsies frozen in a non-viable format, to enable engineered T cell therapy.

View Article and Find Full Text PDF

DNA origami-based composite nanosandwich for iteratively potentiated chemo-immunotherapy.

J Control Release

January 2025

Department of Orthopedics, Sichuan Provincial People's Hospital, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 610054, Sichuan, PR China; TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, No. 39 Shi-er-qiao Road, Chengdu 610072, Sichuan, PR China; Chongqing Engineering Laboratory of Nano/Micro Biomedical Detection Technology, Chongqing University of Science and Technology, Chongqing 401331, PR China; Department of Urology, Deyang People's Hospital, Deyang 618099, Sichuan, PR China. Electronic address:

Developing effective nanoplatforms for chemo-immunotherapy to achieve enhanced tumor suppression and systemic antitumor immunity has recently received extensive attention. Herein, we formulated a multifunctional DNA sandwich nanodevice, DSWAC/siPD-L1, based on triangular DNA origami, to implement enhanced cancer chemo-immunotherapy. Taking advantage of the tumor-targeting ability of the AS1411 aptamer, DSWAC/siPD-L1 efficiently delivered doxorubicin (DOX), CpG, and siPD-L1 into tumor cells.

View Article and Find Full Text PDF

The persistent emergence of COVID-19 variants and recurrent waves of infection worldwide underscores the urgent need for vaccines that effectively reduce viral transmission and prevent infections. Current intramuscular (IM) COVID-19 vaccines inadequately protect the upper respiratory mucosa. In response, we have developed a nonadjuvanted, interferon-armed SARS-CoV-2 fusion protein vaccine with IM priming and intranasal (IN) boost sequential immunization.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!