Radon exhalation from building materials for decorative use.

J Environ Radioact

Radiation Protection Bureau, Health Canada, 775 Brookfield Road, Ottawa K1A 1C1, Canada.

Published: April 2010

Long-term exposure to radon increases the risk of developing lung cancer. There is considerable public concern about radon exhalation from building materials and the contribution to indoor radon levels. To address this concern, radon exhalation rates were determined for 53 different samples of drywall, tile and granite available on the Canadian market for interior home decoration. The radon exhalation rates ranged from non-detectable to 312 Bq m(-2) d(-1). Slate tiles and granite slabs had relatively higher radon exhalation rates than other decorative materials, such as ceramic or porcelain tiles. The average radon exhalation rates were 30 Bq m(-2) d(-1) for slate tiles and 42 Bq m(-2) d(-1) for granite slabs of various types and origins. Analysis showed that even if an entire floor was covered with a material having a radon exhalation rate of 300 Bq m(-2) d(-1), it would contribute only 18 Bq m(-3) to a tightly sealed house with an air exchange rate of 0.3 per hour. Generally speaking, building materials used in home decoration make no significant contribution to indoor radon for a house with adequate air exchange.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jenvrad.2010.01.005DOI Listing

Publication Analysis

Top Keywords

radon exhalation
28
exhalation rates
16
m-2 d-1
16
building materials
12
radon
10
exhalation building
8
concern radon
8
contribution indoor
8
indoor radon
8
d-1 slate
8

Similar Publications

Assessment of radon level and the associated radiological risk from soil samples of quarry area at Hakim Gara, Ethiopia.

Environ Monit Assess

December 2024

School of Nuclear and Allied Sciences, University of Ghana, Atomic Campus, P.O. Box LG 80 Legon, Accra, Ghana.

Excavation of terrestrial surface of the Earth could enhance the chance of exposure to radon while gases in the underground get access to escape. This study was aimed to assess the level of radon concentration from soil samples of quarrying sites at Hakim Gara in Ethiopia using CR-39 detectors in sealed container technique. The results of the measured radon concentration level were ranging from 164.

View Article and Find Full Text PDF

The uranium mines both developed and abandoned appear to be one of the most significant sources of radon exhalation in the world. Therefore, the study of radon exposure of the population in the areas around rehabilitated uranium mines is very important. This article presents the results of the radon release studies at the rehabilitated Beshtaugorsky uranium mine site, which is now used by local people for hiking and picnicking.

View Article and Find Full Text PDF

Radon exhalation rate prediction and early warning model based on VMD-GRU and similar day analysis.

J Environ Radioact

January 2025

College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, Guangdong, China; Shenzhen Key Laboratory of Nuclear and Radiation Safety, Shenzhen, 518060, Guangdong, China.

Article Synopsis
  • A new study presents an early warning system for radon exhalation rates by combining a VMD-GRU prediction model with similar day analysis for improved safety and reliability.
  • The Variational Mode Decomposition (VMD) algorithm breaks down radon data into various components, which are then forecasted using the Gated Recurrent Unit (GRU) algorithm before being aggregated for an overall estimate.
  • The VMD-GRU model's effectiveness is supported by comparisons with other models, showing significant improvements in detecting anomalies in real time, thereby enhancing decision-making for radon monitoring.
View Article and Find Full Text PDF
Article Synopsis
  • The study assesses radon and thoron exhalation rates using a closed-loop technique with online radon monitors, particularly focusing on the balance of air volume in the sample and detector chambers.
  • An alternative model is proposed that treats the sample and detector chambers as separate entities, refining the mass balance equation to account for air flow rates affecting radon/thoron concentrations.
  • Results indicate that while lower flow rates don't affect long-lived radon buildup, experiments showed that increasing flow rates impacts the effective removal rate of radon, suggesting potential issues with thoron interference at lower flows.
View Article and Find Full Text PDF
Article Synopsis
  • * Different materials, such as bricks and cement mortar, have varying radon exhalation rates, necessitating careful consideration of measurement methods and apparatus used.
  • * A Computed Fluid Dynamics (CFD) study found that selecting a representative elementary surface (RES) for measurement can lead to more accurate results in assessing radon exhalation from masonry walls.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!