The clinical use of the potent, wide-spectrum aminoglycoside antibiotics is limited by oto- and nephrotoxicities. The latter is related to the binding of these polycationic drugs to negatively charged phospholipids and to the subsequent inhibition of lysosomal phospholipases. In order to explore the influence of a modification of the hydrophobic/hydrophilic balance at a specific site of an aminoglycoside, kanamycin B has been chemically modified in position 6" by substitution of the hydroxyl group with a halogen atom (or a pseudohalogen group), or an amino, an amido, a thioalkyl, or an alkoxy group, each series containing increasingly bulkier chains. Examination of the antibacterial activity of the synthesized compounds revealed a negative correlation between the size of the 6"-substituent and the antibacterial activity against kanamycin B sensitive Gram-positive and -negative organisms. Only derivatives with small substituents in position 6", namely chloro, bromo, azido, amino, methylcarbamido, acetamido, methylthio, methylsulfinyl, O-methyl, O-ethyl, and O-isopropyl, showed acceptable activity (geometric mean of minimum inhibitory concentrations for Gram-negative strains less than or equal to 2.5 mg/L; value for kanamycin B, 0.5 mg/L). In vitro toxicological evaluation of all derivatives and computer-aided conformational analysis of selected compounds inserted in a phosphatidylinositol monolayer are presented in the following paper in this issue.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/jm00108a035 | DOI Listing |
PLoS One
January 2025
National Institute of Public Health of Mexico, Center for Evaluation and Surveys Research, Cuernavaca, Morelos, Mexico.
Introduction: Tackling the inertia of growing threat of antimicrobial resistance (AMR) requires changes in how antibiotics are prescribed and utilized. The monitoring of antimicrobial prescribing in hospitals is a critical component in optimizing antibiotic use. Point prevalence surveys (PPSs) enable the surveillance of antibiotic prescribing at the patient level in small hospitals that lack the resources to establish antimicrobial stewardship programs (ASP).
View Article and Find Full Text PDFAppl Biochem Biotechnol
January 2025
Department of Plant Sciences, Faculty of Biological Sciences, Quaid-I-Azam University Islamabad, Islamabad, 45320, Pakistan.
The current research was conducted to synthesize Parietaria alsinifolia-mediated iron oxide nanoparticles (P.A@FeONPs) using the green and eco-friendly protocol. The biosynthesized P.
View Article and Find Full Text PDFMar Biotechnol (NY)
January 2025
Burn Research Center, Iran University of Medical Sciences, Tehran, Iran.
Burn wounds are challenging to treat due to considerable tissue damage and fluid loss. Creating wound dressings from natural and biological materials makes it possible to treat wounds and promote rapid epithelialization to speed healing and restore skin function. As a result, the ability of a collagen scaffold (Col) made from rainbow trout (Oncorhynchus mykiss) and putative bioactive phytochemical components from a Sargassum glaucescens (S.
View Article and Find Full Text PDFAlzheimers Dement
December 2024
Institut de l'Audition/Institut Pasteur, Paris, France.
Background: Memory consolidation is an essential process for our everyday lives that is severely disrupted in Alzheimer's Disease (AD). Memories are initially encoded in the hippocampus before being consolidated in the neocortex by synaptic plasticity processes that depend on protein synthesis. However, how molecular pathways affect synaptic signalling during memory consolidation in health and disease is unclear.
View Article and Find Full Text PDFAlzheimers Dement
December 2024
University of Pittsburgh, Pittsburgh, PA, USA.
Background: The bi-directional autophagy and inflammation network becomes progressively dysregulated with age, with systemic inflammation as a biomarker of this dysregulation including in Alzheimer's Disease (AD). We hypothesize that interventions which target the shared feature of systemic inflammation in the biology of aging and AD, via regulation of the autophagy-inflammation network, will prevent the conversion to disease pathogenesis in AD as well as improve healthspan and longevity in aging populations. While previous studies report benefits of mTOR inhibition including rapamycin in transgenic mouse models of familial AD, the present studies aim to evaluate this pathway in a model of sporadic, late onset AD (LOAD) and test the contribution of AMP-activated protein kinase (AMPK) as a critical regulator of the mTOR pathway.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!