Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Reactions of salivary nitrite with components of wine were studied using an acidic mixture of saliva and wine. The formation of nitric oxide (NO) in the stomach after drinking wine was observed. The formation of NO was also observed in the mixture (pH 3.6) of saliva and wine, which was prepared by washing the oral cavity with wine. A part of the NO formation in the stomach and the oral cavity was due to the reduction of salivary nitrite by caffeic and ferulic acids present in wine. Ethyl nitrite produced by the reaction of salivary nitrite and ethyl alcohol in wine also contributed to the formation of NO. In addition to the above reactions, caffeic acid in wine could be transformed to the oxathiolone derivative, which might have pharmacological functions. The results obtained in this study may help in understanding the effects of drinking wine on human health.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.3109/10715760903486057 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!