AI Article Synopsis

  • - The study assessed the effectiveness of the VP4, VP2, and VP1 gene regions in typing human enteroviruses using RT-PCR primers on 86 field isolates from different HEV types.
  • - For HEV-A, all three gene regions showed 100% concordance, but only VP2 and VP1 were reliable for HEV-B and HEV-C typing, as VP4 did not perform as well for these types.
  • - Further analysis of VP4 with additional sequences confirmed it aligns completely with VP1 for HEV-A, suggesting that using all three gene regions can improve virus identification, aiding in the management of diseases like hand, foot, and mouth disease.

Article Abstract

The VP4, VP2, and VP1 gene regions were evaluated for their usefulness in typing human enteroviruses. Three published RT-PCR primers sets targeting separately these three gene regions were used. Initially, from a total of 86 field isolates (36 HEV-A, 40 HEV-B, and 10 HEV-C) tested, 100% concordance in HEV-A was identified from all three gene regions (VP4, VP2, and VP1). However, for HEV-B and HEV-C viruses, only the VP2 and VP1 regions, and not VP4, showed 100% concordance in typing these viruses. To evaluate further the usefulness of VP4 in typing HEV-A enteroviruses, 55 Japanese and 203 published paired VP4 and VP1 nucleotide sequences were also examined. In each case, typing by VP4 was 100% in concordance with typing using VP1. Given these results, it is proposed that for HEV-A enteroviruses, all three gene regions (VP4, VP2, and VP1), would be useful for typing these viruses. These options would enhance the capability of laboratories in identifying these viruses and would greatly help in outbreaks of hand, foot, and mouth disease.

Download full-text PDF

Source
http://dx.doi.org/10.1002/jmv.21652DOI Listing

Publication Analysis

Top Keywords

vp2 vp1
16
gene regions
16
vp4 vp2
12
three gene
12
100% concordance
12
regions vp4
12
vp4
8
typing human
8
human enteroviruses
8
enteroviruses three
8

Similar Publications

Human rhinovirus C (HRV-C) is a significant contributor to respiratory tract infections in children and is implicated in asthma exacerbations across all age groups. Despite its impact, there is currently no licensed vaccine available for HRV-C. Here, we present a novel approach to address this gap by employing immunoinformatics techniques for the design of a multi-epitope-based vaccine against HRV-C.

View Article and Find Full Text PDF

Recombinant Marek's disease virus expressing VP1 and VP2 proteins provides robust immune protection against chicken infectious anemia virus.

Front Microbiol

January 2025

Avian Immunosuppressive Diseases Division, State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China.

Chicken infectious anemia (CIA) is a highly contagious disease caused by the chicken infectious anemia virus (CIAV), and it poses a serious threat to the poultry industry. However, effective control measures and strategies have not been identified. In this study, a recombinant Marek's disease virus (rMDV) expressing the VP1 and VP2 proteins of CIAV was successfully constructed using CRISPR/Cas9, and a commercial Marek's disease virus (MDV) vaccine strain was used as the vector.

View Article and Find Full Text PDF

Human bocavirus infections in paediatric patients in a tertiary care hospital in Kerala, India.

Arch Virol

January 2025

Molecular Bioassay Laboratory, Institute of Advanced Virology, Bio 360 Life Sciences Park, Thonnakkal, Thiruvananthapuram, Kerala, India.

Human bocaviruses (HBoVs) can cause respiratory illness in young children. Although the first HBoV infection in India was reported in 2010, very little information is available about its prevalence, clinical features, or geographic distribution in this country. This study was conducted using 136 respiratory samples from paediatric patients in a tertiary care hospital in Kerala, 21 of which tested positive for HBoV1 and were further characterized through VP1/VP2 gene sequencing.

View Article and Find Full Text PDF

Enteroviruses and rhinoviruses are highly diverse, with over 300 identified types. Reverse transcription-polymerase chain reaction (RT-PCR) assays targeting their VP1, VP4, and partial VP2 (VP4-pVP2) genomic regions are used for detection and identification. The VP4-pVP2 region is particularly sensitive to RT-PCR detection, making it efficient for clinical specimen analysis.

View Article and Find Full Text PDF

Physicochemical and biological impacts of light stress on adeno-associated virus serotype 6.

Mol Ther Methods Clin Dev

December 2024

Department of Biotechnology, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan.

Article Synopsis
  • Recombinant adeno-associated virus (rAAV) is being studied as a gene therapy vector, but its response to light exposure has not been fully understood.
  • Research on rAAV6 with EGFP showed that light stress resulted in a 20% loss of virus particles and a 90% reduction in biological activity, primarily due to DNA degradation.
  • Analysis revealed that light exposure causes specific types of protein and DNA damage, indicating the importance of careful handling and storage of rAAV to preserve its therapeutic effectiveness.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!