AI Article Synopsis

Article Abstract

The sense of smell is essential for insects to find foods, mates, predators, and oviposition sites. Insect olfactory sensory neurons (OSNs) are enclosed in sensory hairs called sensilla, which cover the surface of olfactory organs. The surface of each sensillum is covered with tiny pores, through which odorants pass and dissolve in a fluid called sensillum lymph, which bathes the sensory dendrites of the OSNs housed in a given sensillum. The OSN dendrites express odorant receptor (OR) proteins, which in insects function as odor-gated ion channels. The interaction of odorants with ORs either increases or decreases the basal firing rate of the OSN. This neuronal activity in the form of action potentials embodies the first representation of the quality, intensity, and temporal characteristics of the odorant. Given the easy access to these sensory hairs, it is possible to perform extracellular recordings from single OSNs by introducing a recording electrode into the sensillum lymph, while the reference electrode is placed in the lymph of the eye or body of the insect. In Drosophila, sensilla house between one and four OSNs, but each OSN typically displays a characteristic spike amplitude. Spike sorting techniques make it possible to assign spiking responses to individual OSNs. This single sensillum recording (SSR) technique monitors the difference in potential between the sensillum lymph and the reference electrode as electrical spikes that are generated by the receptor activity on OSNs. Changes in the number of spikes in response to the odorant represent the cellular basis of odor coding in insects. Here, we describe the preparation method currently used in our lab to perform SSR on Drosophila melanogaster and Anopheles gambiae, and show representative traces induced by the odorants in a sensillum-specific manner.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2830253PMC
http://dx.doi.org/10.3791/1725DOI Listing

Publication Analysis

Top Keywords

sensillum lymph
12
single sensillum
8
drosophila melanogaster
8
melanogaster anopheles
8
anopheles gambiae
8
sensory hairs
8
lymph reference
8
reference electrode
8
osns
6
sensillum
6

Similar Publications

Characterization of the ligand-binding properties of odorant-binding protein 38 from when interacting with soybean volatiles.

Front Physiol

January 2025

Plant Protection Institute, Hebei Academy of Agriculture and Forestry Sciences, Key Laboratory of Integrated Pest Management on Crops in Northern Region of North China, Ministry of Agriculture and Rural Affairs, IPM Innovation Center of Hebei Province, International Science and Technology Joint Research Center on IPM of Hebei Province, Baoding, China.

Background: (Fabricius) (Hemiptera: Alydidae) is a major soybean pest throughout East Asia that relies on its advanced olfactory system for the perception of plant-derived volatile compounds and aggregation pheromones for conspecific and host plant localization. Odorant binding proteins (OBPs) facilitate the transport of odorant compounds across the sensillum lymph within the insect olfactory system, enabling their interaction with odorant receptors (ORs).

Methods: Real-time quantitative PCR (qRT-PCR) analyses, fluorescence-based competitive binding assays, and molecular docking analyses were applied to assess the expression and ligand-binding properties of OBP38 from .

View Article and Find Full Text PDF

V-ATPases are ubiquitous and evolutionarily conserved rotatory proton pumps, which are crucial for maintaining various biological functions. Previous investigations have shown that a V-ATPase is present in the support cells of moth trichoid sensilla and influences their olfactory sensory neuron performance. Generally, V-ATPases are thought to regulate the pH value within the sensillum lymph, and aid K homeostasis within the sensillum.

View Article and Find Full Text PDF

Comparation of pheromone-binding proteins 1 and 2 of Spodoptera frugiperda in perceiving the three sex pheromone components Z9-14:Ac, Z7-12: Ac and Z11-16: Ac.

Pestic Biochem Physiol

December 2024

Zhongkai University of Agriculture and Engineering, Key Laboratory of Green Prevention and Control on Fruits and Vegetables in South China, Ministry of Agriculture and Rural Affairs, PR China. Electronic address:

Pheromone-binding proteins (PBPs) are mainly responsible for binding and transporting hydrophobic pheromone molecules across the aqueous sensilla lymph to the receptor proteins. The preference of each PBP is believed to be different for each pheromone component within a single species. Significantly higher expression level of PBP1 and PBP2 in the male antennae of Spodoptera frugiperda suggesting that SfruPBP1 and SfruPBP2 might play important roles in pheromone perception.

View Article and Find Full Text PDF

Three-dimensional reconstruction of insect chemosensory sensillum.

Int J Biol Macromol

November 2024

Institute of Insect Science, Zhejiang University, Hangzhou 310058, China; State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Key Laboratory of Biotechnology in Plant Protection of Ministry of Agriculture and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo 315211, China. Electronic address:

The olfactory system is involved in food and mate recognition in insects. However, 3D structures of chemosensory sensilla in insects are unexplored yet. Here, the internal structures of an olfactory sensillum on the antenna of the brown planthopper, Nilaparvata lugens (Hemiptera: Delphacidae), one of the most important rice pests, are examined and imaged using focused ion beam scanning electron microscopy.

View Article and Find Full Text PDF

Odor detection in insects is largely mediated by structures on antennae called sensilla, which feature a strongly conserved architecture and repertoire of olfactory sensory neurons (OSNs) and various support cell types. In Drosophila, OSNs are tightly apposed to supporting cells, whose connection with neurons and functional roles in odor detection remain unclear. Coupling mechanisms between these neuronal and non-neuronal cell types have been suggested based on morphological observations, concomitant physiological activity during odor stimulation, and known interactions that occur in other chemosensory systems.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!