Familial relationships in hyperthermo- and acidophilic archaeal viruses.

J Virol

Institute of Biotechnology and Department of Biosciences, Biocenter 3, P.O. Box 65 (Viikinkaari 1), FI-00014 University of Helsinki, Helsinki, Finland.

Published: May 2010

Archaea often live in extreme, harsh environments such as acidic hot springs and hypersaline waters. To date, only two icosahedrally symmetric, membrane-containing archaeal viruses, SH1 and Sulfolobus turreted icosahedral virus (STIV), have been described in detail. We report the sequence and three-dimensional structure of a third such virus isolated from a hyperthermoacidophilic crenarchaeon, Sulfolobus strain G4ST-2. Characterization of this new isolate revealed it to be similar to STIV on the levels of genome and structural organization. The genome organization indicates that these two viruses have diverged from a common ancestor. Interestingly, the prominent surface turrets of the two viruses are strikingly different. By sequencing and mass spectrometry, we mapped several large insertions and deletions in the known structural proteins that could account for these differences and showed that both viruses can infect the same host. A combination of genomic and proteomic analyses revealed important new insights into the structural organization of these viruses and added to our limited knowledge of archaeal virus life cycles and host-cell interactions.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2863766PMC
http://dx.doi.org/10.1128/JVI.02156-09DOI Listing

Publication Analysis

Top Keywords

archaeal viruses
8
structural organization
8
viruses
6
familial relationships
4
relationships hyperthermo-
4
hyperthermo- acidophilic
4
acidophilic archaeal
4
viruses archaea
4
archaea live
4
live extreme
4

Similar Publications

Background: Salmonella enterica serovar Typhimurium is one of the most common serovars of Salmonella associated with clinical cases. It not only leads to diarrhea and mortality raised in livestock and poultry farming, but also poses a risk to food safety.

Results: In this study, a lytic bacteriophage named ZK22 was isolated and identified from sewage.

View Article and Find Full Text PDF

Background: Viruses that infect prokaryotes (phages) constitute the most abundant group of biological agents, playing pivotal roles in microbial systems. They are known to impact microbial community dynamics, microbial ecology, and evolution. Efforts to document the diversity, host range, infection dynamics, and effects of bacteriophage infection on host cell metabolism are extremely underexplored.

View Article and Find Full Text PDF

Bacteria, fungi, archaea, and viruses are reflective organisms that indicate soil health. Investigating the impact of crude oil pollution on the community structure and interactions among bacteria, fungi, archaea, and viruses in Calamagrostis epigejos soil can provide theoretical support for remediating crude oil pollution in Calamagrostis epigejos ecosystems. In this study, Calamagrostis epigejos was selected as the research subject and subjected to different levels of crude oil addition (0 kg/hm, 10 kg/hm, 40 kg/hm).

View Article and Find Full Text PDF

Insights Into Phylogeny, Diversity and Functional Potential of Poseidoniales Viruses.

Environ Microbiol

January 2025

School of Chemistry and Molecular Biosciences, Australian Centre for Ecogenomics, The University of Queensland, Brisbane, Queensland, Australia.

Viruses infecting archaea play significant ecological roles in marine ecosystems through host infection and lysis, yet they have remained an underexplored component of the virosphere. In this study, we recovered 451 archaeal viruses from a subtropical estuary, identifying 63 that are associated with the dominant marine order Poseidoniales (Marine Group II Archaea). Phylogenetic analyses of a subset of complete and nearly-complete viral genomes assigned these viruses to the order Magrovirales, a lineage of Poseidoniales viruses, and identified a novel group of viruses distinct from Magrovirales.

View Article and Find Full Text PDF

Isolation and characterization of ɸEcM-vB1 bacteriophage targeting multidrug-resistant Escherichia coli.

BMC Res Notes

January 2025

Department of Microbiology and Immunology, Faculty of Pharmacy, Damanhour University, Damanhour, Egypt.

Objectives: The aim of this study is to screen for, isolate and characterize a bacteriophage designated ɸEcM-vB1 with confirmed lytic activity against multidrug-resistant (MDR) E. coli. Methods done in this research are bacteriophage isolation, purification, titer determination, bacteriophage morphology, host range determination, bacteriophage latent period and burst size determination, genomic analysis by restriction enzymes, and bacteriophage total protein content determination.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!