Site-specific phosphorylation dynamics of the nuclear proteome during the DNA damage response.

Mol Cell Proteomics

Center for Experimental BioInformatics, Department of Biochemistry and Molecular Biology, University of Southern Denmark, Campusvej 55, DK-5230 Odense M, Denmark.

Published: June 2010

To investigate the temporal regulation of the DNA damage response, we applied quantitative mass spectrometry-based proteomics to measure site-specific phosphorylation changes of nuclear proteins after ionizing radiation. We profiled 5204 phosphorylation sites at five time points following DNA damage of which 594 sites on 209 proteins were observed to be regulated more than 2-fold. Of the 594 sites, 372 are novel phosphorylation sites primarily of nuclear origin. The 594 sites could be classified to distinct temporal profiles. Sites regulated shortly after radiation were enriched in the ataxia telangiectasia mutated (ATM) kinase SQ consensus sequence motif and a novel SXXQ motif. Importantly, in addition to induced phosphorylation, we identified a considerable group of sites that undergo DNA damage-induced dephosphorylation. Together, our data extend the number of known phosphorylation sites regulated by DNA damage, provides so far unprecedented temporal dissection of DNA damage-modified phosphorylation events, and elucidate the cross-talk between different types of post-translational modifications in the dynamic regulation of a multifaceted DNA damage response.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2877989PMC
http://dx.doi.org/10.1074/mcp.M900616-MCP200DOI Listing

Publication Analysis

Top Keywords

dna damage
20
damage response
12
phosphorylation sites
12
594 sites
12
site-specific phosphorylation
8
sites
8
sites regulated
8
dna
7
phosphorylation
6
damage
5

Similar Publications

Background: This study tested the hypothesis that extracorporeal shockwave therapy (ECSWT) effectively rescues critical limb ischemia (CLI) in mice through the upregulation of GPR120, which protects against inflammation and angiogenesis to restore blood flow in the ischemic area.

Methods And Results: Compared with the control, ECSWT-induced GPR120-mediated anti-inflammatory effects significantly suppressed the expression of inflammatory signaling biomarkers (TAK1/MAPK family/NF-κB/IL-1β/IL-6/TNF-α/MCP-1) in HUVECs, and these effects were abolished by silencing GPR120 or by the GPR120 antagonist AH7614 (all P < 0.001).

View Article and Find Full Text PDF

Due to the emergence of drug resistance, androgen receptor (AR)-targeted drugs still pose great challenges in the treatment of prostate cancer, and it is urgent to explore an innovative therapeutic strategy. MK-1775, a highly selective WEE1 inhibitor, is shown to have favorable therapeutic benefits in several solid tumor models. Recent evidence suggests that the combination of MK-1775 with DNA-damaging agents could lead to enhanced antitumor efficacy.

View Article and Find Full Text PDF

Non-small cell lung cancer (NSCLC) has emerged as one of the most prevalent malignancies worldwide. N6-methyladenosine (mA) methylation, a pervasive epigenetic modification in long noncoding RNAs (lncRNAs), plays a crucial role in NSCLC progression. Here, we report that mA modification and the expression of the lncRNA stem cell inhibitory RNA transcript (SCIRT) was significantly upregulated in NSCLC tissues and cells.

View Article and Find Full Text PDF

Astaxanthin (ASX), "king of carotenoids", is a xanthophyll carotenoid that is characterized by a distinct reddish-orange hue, procured from diverse sources including plants, microalgae, fungi, yeast, and lichens. It exhibits potent antioxidant and anti-ageing properties and has been demonstrated to mitigate ultraviolet-induced cellular and DNA damage, enhance immune system function, and improve cardiovascular diseases. Despite its broad utilization across nutraceutical, cosmetic, aquaculture, and pharmaceutical sectors, the large-scale production and application of ASX are constrained by the limited availability of natural sources, low production yields and stringent production requirements.

View Article and Find Full Text PDF

SUMMARYHuman papillomaviruses (HPVs) are small DNA viruses that are responsible for significant disease burdens worldwide, including cancers of the cervix, anogenital tract, and oropharynx. HPVs infect stratified epithelia at a variety of body locations and link their productive life cycles to the differentiation of the host cell. These viruses have evolved sophisticated mechanisms to exploit cellular pathways, such as DNA damage repair (DDR), to regulate their life cycles.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!