Many members of the transforming growth factor-beta (TGF-beta) superfamily have been shown to be important regulators of metanephric development. In this study, we characterized the effect of TGF-beta2 on metanephric development. Rat and mouse metanephroi cultured in the presence of exogenous TGF-beta2 for up to 15 days were small, and contained rudimentary ureteric branches and few glomeruli. These metanephroi were mostly comprised of mesenchymal cells, with two cell populations (designated Type 1 and Type 2 cells) evident. Type 1 cells were only observed when TGF-beta2 was added from the commencement of culture, they resembled chondroblasts and were Alcian Blue and Col IIB positive. Type 2 cells were observed whenever TGF-beta2 was added to the media, formed a band at the periphery of the explants consisting of 5-10 layers of spindle-shaped cells, and were alpha-smooth muscle actin positive. Molecular and RNA in situ hybridization analysis of metanephroi cultured in the presence of TGF-beta2 for 6 days demonstrated that Type 1 and 2 cells were negative for Pax2, WT1, GDNF and FoxD1. Gene expression profiling demonstrated an upregulation of chondrocyte, myogenic and stromal genes, some of which were identified as markers of Type 1 and Type 2 cells. In addition, TGF-beta2 was capable of maintaining the survival of mouse isolated metanephric mesenchyme (iMM) in the absence of serum or inductive signals from the ureteric epithelium. TGF-beta2 also induced the differentiation of iMM into Type 1 and 2 cells. The presence of chondrocytes and muscle in these cultures is reminiscent of the cell types found in some Wilms' tumors. These studies demonstrate that TGF-beta2 is capable of differentiating metanephric mesenchyme away from a renal cell fate.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.diff.2010.01.004DOI Listing

Publication Analysis

Top Keywords

type cells
24
tgf-beta2
9
presence tgf-beta2
8
metanephric development
8
metanephroi cultured
8
cultured presence
8
tgf-beta2 days
8
cells
8
type
8
type type
8

Similar Publications

IL-7 secreted by keratinocytes induces melanogenesis via c-kit/MAPK signaling pathway in Melan-a melanocytes.

Arch Dermatol Res

January 2025

Department of Genetics & Biotechnology, Graduate School of Biotechnology, College of Life Sciences, Kyung Hee University, Youngin, 17104, Republic of Korea.

Abnormal melanin synthesis within melanocytes can result in pigmentary skin disorders. Although pigmentation alterations associated with inflammation are frequently observed, the precise reason for this clinical observation is still unknown. More specifically, although many cytokines are known to be critical for inflammatory skin processes, it is unclear how they affect epidermal melanocyte function.

View Article and Find Full Text PDF

IL-35 modulates Tfh2 and Tfr cell balance to alleviate allergic rhinitis.

Inflamm Res

January 2025

Department of Otolaryngology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510623, China.

Background: Allergic rhinitis (AR) represents a persistent inflammatory condition affecting the upper respiratory tract, characterized by abnormal initiation of the immunoglobulin E (IgE)-mediated cascade. Follicular helper T (Tfh) cells and regulatory T (Tfr) cells are pivotal in orchestrating the development of IgE production in AR patients. IL-35, an anti-inflammatory cytokine, secreted by various cellular subpopulations.

View Article and Find Full Text PDF

This study aimed to investigate the role of transforming growth factor-beta 3 (TGF-β3) secreted by adipose-derived stem cells (ADSCs) in suppressing melanin synthesis during the wound healing process, particularly in burn injuries, and to explore the underlying mechanisms involving the cAMP/PKA signaling pathway. ADSCs were isolated from C57BL/6 mice and characterized using flow cytometry and differentiation assays. A burn injury model was established in mice, followed by UVB irradiation to induce hyperpigmentation.

View Article and Find Full Text PDF

Palmitate potentiates the SMAD3-PAI-1 pathway by reducing nuclear GDF15 levels.

Cell Mol Life Sci

January 2025

Department of Pharmacology, Toxicology and Therapeutic Chemistry, Faculty of Pharmacy and Food Sciences, Unitat de Farmacologia, Universitat de Barcelona, Av. Joan XXIII 27-31, 08028, Barcelona, Spain.

Nuclear growth differentiation factor 15 (GDF15) reduces the binding of the mothers' against decapentaplegic homolog (SMAD) complex to its DNA-binding elements. However, the stimuli that control this process are unknown. Here, we examined whether saturated fatty acids (FA), particularly palmitate, regulate nuclear GDF15 levels and the activation of the SMAD3 pathway in human skeletal myotubes and mouse skeletal muscle, where most insulin-stimulated glucose use occurs in the whole organism.

View Article and Find Full Text PDF

Menstrual effluent cell profiles have potential as noninvasive biomarkers of female reproductive and gynecological health and disease. We used DNA methylation-based cell type deconvolution (methylation cytometry) to identify cell type profiles in self-collected menstrual effluent. During the second day of their menstrual cycle, healthy participants collected menstrual effluent using a vaginal swab, menstrual cup, and pad.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!