A prospective study of acute movement disorders in children.

Dev Med Child Neurol

Neuroimmunology Group, Institute of Neuroscience and Muscle Research, Kids Research Institute at the Children's Hospital at Westmead, Sydney, NSW, Australia.

Published: August 2010

Aim: The purpose of this study was to report a prospective cohort of children with acute-onset movement disorders.

Method: We report on 52 individuals (31 females, 21 males; mean age 6y 5mo, range 2mo-15y) with acute-onset movement disorders managed at a busy tertiary paediatric referral hospital over a 40-month period.

Results: In descending order of frequency, the movement disorders reported were chorea, dystonia, tremor, myoclonus, and parkinsonism. It was possible to divide the participants into three groups: (1) those with inflammatory or autoimmune disorders (n=22), (2) those with non-inflammatory disorders (n=18), and (3) those with psychogenic disorders (n=12). The inflammatory or autoimmune aetiologies included N-methyl-D-aspartate receptor encephalitis (n=5), opsoclonus-myoclonus syndrome (n=4), Sydenham chorea (n=3), systemic lupus erythematosus (n=3), acute necrotizing encephalopathy (n=3), and other types of encephalitis (n=4). Other important non-inflammatory movement disorder aetiologies included drug-induced movement disorder (n=6), post-pump chorea (n=5), metabolic (n=3) and vascular (n=2) disease. The participants with psychogenic movement disorders (n=12) were all over 10 years of age and were more likely to be female. Tremor and myoclonus were significantly over-represented in the psychogenic movement disorder subgroup. The outcomes of the total cohort were variable, and included full recovery, severe morbidity, and death.

Interpretation: Acute-onset movement disorders in children are important and may be treatable. Management should focus upon identifying the cause and treating the underlying disease process, as symptomatic treatment of the abnormal movements is variably effective.

Download full-text PDF

Source
http://dx.doi.org/10.1111/j.1469-8749.2009.03598.xDOI Listing

Publication Analysis

Top Keywords

movement disorders
20
acute-onset movement
12
movement disorder
12
movement
9
disorders
8
disorders children
8
tremor myoclonus
8
inflammatory autoimmune
8
disorders n=12
8
aetiologies included
8

Similar Publications

Comparative efficacy of robot-assisted therapy associated with other different interventions on upper limb rehabilitation after stroke: A protocol for a network meta-analysis.

PLoS One

January 2025

Innovation Center of Nursing Research, Nursing Key Laboratory of Sichuan Province, West China Hospital, Sichuan University/West China School of Nursing, Sichuan University, Chengdu, China.

Introduction: Post-stroke movement disorders are common, especially upper limb dysfunction, which seriously affects the physical and mental health of stroke patients. With the continuous development of intelligent technology, robot-assisted therapy has become a research hotspot in the upper limb rehabilitation of stroke patients in recent years. Many scholars have also integrated robot-assisted therapy with other interventions to improve rehabilitation outcomes.

View Article and Find Full Text PDF

Endogenous LRRK2 and PINK1 function in a convergent neuroprotective ciliogenesis pathway in the brain.

Proc Natl Acad Sci U S A

February 2025

Medical Research Council Protein Phosphorylation and Ubiquitylation Unit, School of Life Sciences, University of Dundee, Dundee DD1 5EH, United Kingdom.

Mutations in Leucine-rich repeat kinase 2 (LRRK2) and PTEN-induced kinase 1 (PINK1) are associated with familial Parkinson's disease (PD). LRRK2 phosphorylates Rab guanosine triphosphatase (GTPases) within the Switch II domain while PINK1 directly phosphorylates Parkin and ubiquitin (Ub) and indirectly induces phosphorylation of a subset of Rab GTPases. Herein we have crossed LRRK2 [R1441C] mutant knock-in mice with PINK1 knock-out (KO) mice and report that loss of PINK1 does not impact endogenous LRRK2-mediated Rab phosphorylation nor do we see significant effect of mutant LRRK2 on PINK1-mediated Rab and Ub phosphorylation.

View Article and Find Full Text PDF

The Neurodiversity Framework in Medicine: On the Spectrum.

Dev Neurobiol

January 2025

Department of Physical Medicine and Rehabilitation, Harvard Medical School, Boston, Massachusetts, USA.

The term "neurodiversity" refers to the natural heterogeneity in human neurological functioning, which includes neurodevelopmental differences and other mental health conditions (e.g., autism spectrum disorder [ASD], attention-deficit hyperactivity disorder [ADHD], dyslexia, bipolar disorder, schizophrenia, and depression).

View Article and Find Full Text PDF

Nicotinic acetylcholine receptors (nAChRs) are a family of ligand-gated ion channels expressed in nervous and non-nervous system tissue important for memory, movement, and sensory processes. The pharmacological targeting of nAChRs, using small molecules or peptides, is a promising approach for the development of compounds for the treatment of various human diseases including inflammatory and neurogenerative disorders such as Alzheimer's disease. Using the acetylcholine binding protein (Ac-AChBP) as an established structural surrogate for human homopentameric α7 nAChRs, we describe an innovative protein painting mass spectrometry (MS) method that can be used to identify interaction sites for various ligands at the extracellular nAChR site.

View Article and Find Full Text PDF

Oxidative stress and dysregulated long noncoding RNAs in the pathogenesis of Parkinson's disease.

Biol Res

January 2025

Department of Neurology, Fourth Affiliated Hospital of China Medical University, No.4 Chongshan East Road, Huanggu District, Shenyang, 110032, Liaoning, China.

Parkinson's disease (PD) is a progressive age-related neurodegenerative disease whose annual incidence is increasing as populations continue to age. Although its pathogenesis has not been fully elucidated, oxidative stress has been shown to play an important role in promoting the occurrence and development of the disease. Long noncoding RNAs (lncRNAs), which are more than 200 nucleotides in length, are also involved in the pathogenesis of PD at the transcriptional level via epigenetic regulation, or at the post-transcriptional level by participating in physiological processes, including aggregation of the α-synuclein, mitochondrial dysfunction, oxidative stress, calcium stabilization, and neuroinflammation.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!