The 20 kDa Bacillus circulans Bcx is a well-studied endoxylanase with a beta-jellyroll fold that places its N- and C-termini in salt bridge contact. Initial experiments verified that Bcx could be circularly permuted by PCR methods to introduce new termini in loop regions while linking its native termini directly or via one or two glycines. Subsequently, a library of circular permutants, generated by random DNase cleavage of the circularized Bcx gene, was screened for xylanase activity on xylan in Congo Red-stained agar. Analysis of 35 unique active circular permutants revealed that, while many of the new termini were introduced in external loops as anticipated, a surprising number were also located within beta-strands. Furthermore, several permutations placed key catalytic residues at or near the new termini with minimal deleterious effects on activity and, in one case, a 4-fold increase. The structure of one permutant was determined by X-ray crystallography, whereas three others were probed by NMR spectroscopy. These studies revealed that the overall conformation of Bcx changed very little in response to circular permutation, with effects largely being limited to increased local mobility near the new and the linked old termini and to a decrease in global stability against thermal denaturation. This library of circularly permuted xylanases provides an excellent set of new start points for directed evolution of this commercially important enzyme, as well as valuable constructs for intein-mediated replacement of key catalytic residues with unnatural analogues. Such approaches should permit new insights into the mechanism of enzymatic glycoside hydrolysis.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/bi100036f | DOI Listing |
Structure
December 2024
Department of Biology, University of Copenhagen, Ole Maaløes Vej 5, 2200 Copenhagen, Denmark. Electronic address:
Gene variants resulting in insertions or deletions of amino acid residues (indels) have important consequences for evolution and are often linked to disease, yet, compared to missense variants, the effects of indels are poorly understood and predicted. We developed a sensitive protein folding sensor based on the complementation of uracil auxotrophy in yeast by circular permutated orotate phosphoribosyltransferase (CPOP). The sensor reports on the folding of disease-linked missense variants and de-novo-designed proteins.
View Article and Find Full Text PDFPlants (Basel)
November 2024
Council for Agricultural Research and Economics, Research Center for Agriculture and Environment, Via Celso Ulpiani, 5, 70125 Bari, Italy.
Climate change and water scarcity bring significant challenges to agricultural systems in the Mediterranean region. Novel methods are required to rapidly monitor the water stress of the crop to avoid qualitative losses of agricultural products. This study aimed to predict the stem water potential of cotton ( L.
View Article and Find Full Text PDFNat Biomed Eng
December 2024
MRC Laboratory of Molecular Biology, Cambridge, UK.
Circular RNA (circRNA) is a candidate for next-generation messenger RNA therapeutics owing to its remarkable stability. Here we describe trans-splicing-based methods for the synthesis of circRNAs over 8,000 nucleotides. The methods are independent of bacterial sequences, outperform the permuted intron-exon method and allow for the incorporation of RNA modifications.
View Article and Find Full Text PDFMethods
December 2024
Department of Chemistry, Pennsylvania State University, University Park, PA 16802, USA; Center for RNA and Molecular Biology, Pennsylvania State University, University Park, PA 16802, USA; Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, PA 16802, USA. Electronic address:
Small self-cleaving ribozymes are catalytic RNAs that cleave their phosphodiester backbone rapidly and site-specifically, without the assistance of proteins. Their catalytic properties make them ideal targets for applications in RNA pharmaceuticals and bioengineering. Consequently, computational pipelines that predict or design thousands of self-cleaving ribozyme candidates have been developed.
View Article and Find Full Text PDFElife
December 2024
Institute for Systems and Physical Biology, Shenzhen Bay Laboratory, Shenzhen, China.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!