A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Quantum tunneling of hydrogen atom in dissociation of photoexcited methylamine. | LitMetric

The probability of hydrogen atom release, following photoexcitation of methylamine, CH(3)NH(2), is found to increase extensively as higher vibrational states on the first excited electronic state are accessed. This behavior is consistent with theoretical calculations, based on the probability of H atom tunneling through an energy barrier on the excited potential energy surface, implying that N-H bond breaking is dominated by quantum tunneling.

Download full-text PDF

Source
http://dx.doi.org/10.1021/jp912107hDOI Listing

Publication Analysis

Top Keywords

quantum tunneling
8
hydrogen atom
8
tunneling hydrogen
4
atom dissociation
4
dissociation photoexcited
4
photoexcited methylamine
4
methylamine probability
4
probability hydrogen
4
atom release
4
release photoexcitation
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!