Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
The electrochemical behavior of the [Au(III)Cl(4)](-)-[Au(I)Cl(2)](-)-Au(0) redox system in room temperature ionic liquid (RTIL) of 1-ethyl-3-methylimidazolium tetrafluoroborate (EMIBF(4)) has been investigated quantitatively using an in situ electrochemical quartz crystal microbalance (EQCM) technique based on a Pt film-coated quartz crystal electrode (Pt-QCE). A series of two-electron (2e) and one-electron (1e) reductions of the [Au(III)Cl(4)](-) to [Au(I)Cl(2)](-) and [Au(I)Cl(2)](-) to Au metal were recognized at the Pt surface. Besides, the disproportionation reaction of [Au(I)Cl(2)](-) (i.e., the 2e-reduction product of [Au(III)Cl(4)](-)) to [Au(III)Cl(4)](-) and Au metal was also observed. Electro-dissolution of the Au deposited on the Pt electrode through a 1e-oxidation reaction in the presence of chloride ions was also confirmed using the Pt-QCE based EQCM technique. A 2e-oxidation reaction of [Au(I)Cl(2)](-) (i.e., the dissolved product) to [Au(III)Cl(4)](-) along with the oxidation of Cl(-) ion on the Pt surface was also realized at high anodic potential. The results demonstrate that in situ EQCM technique is applicable and powerful in elucidating electrochemical surface phenomena accompanying a mass change in RTIL.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/la904483y | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!