In previous studies, we have shown overexpression and ectopic subcellular distribution of gamma-tubulin and betaIII-tubulin in human glioblastomas and glioblastoma cell lines (Katsetos et al., 2006, J Neuropathol Exp Neurol 65:455-467; Katsetos et al., 2007, Neurochem Res 32:1387-1398). Here we determined the expression of gamma-tubulin in surgically excised medulloblastomas (n = 20) and in the human medulloblastoma cell lines D283 Med and DAOY. In clinical tissue samples, the immunohistochemical distribution of gamma-tubulin labeling was pervasive and inversely related to neuritogenesis. Overexpression of gamma-tubulin was widespread in poorly differentiated, proliferating tumor cells but was significantly diminished in quiescent differentiating tumor cells undergoing neuritogenesis, highlighted by betaIII-tubulin immunolabeling. By quantitative real-time PCR, gamma-tubulin transcripts for TUBG1, TUBG2, and TUBB3 genes were detected in both cell lines but expression was less prominent when compared with the human glioblastoma cell lines. Immunoblotting revealed comparable amounts of gamma-tubulin and betaIII-tubulin in different phases of cell cycle; however, a larger amount of gamma-tubulin was detected in D283 Med when compared with DAOY cells. Interphase D283 Med cells exhibited predominantly diffuse cytoplasmic gamma-tubulin localization, in addition to the expected centrosome-associated distribution. Robust betaIII-tubulin immunoreactivity was detected in mitotic spindles of DAOY cells. Our data indicate that overexpression of gamma-tubulin may be linked to phenotypic dedifferentiation (anaplasia) and tumor progression in medulloblastomas and may potentially serve as a promising tumor marker.

Download full-text PDF

Source
http://dx.doi.org/10.1002/jcp.22077DOI Listing

Publication Analysis

Top Keywords

cell lines
20
distribution gamma-tubulin
12
gamma-tubulin betaiii-tubulin
12
d283 med
12
gamma-tubulin
10
medulloblastomas human
8
human medulloblastoma
8
medulloblastoma cell
8
glioblastoma cell
8
overexpression gamma-tubulin
8

Similar Publications

Introduction/objective: Plants and their bioactive compounds play a crucial role in the pharmaceutical industry for treating cancer. To date, the cytotoxic and antiproliferative effects of Hypericum perforatum methanol extract on human thyroid cancer cell lines have not been thoroughly explored. The present study aimed to assess the potential anti-cancer effects of HPME on human thyroid cancer and investigate its potential therapeutic benefits.

View Article and Find Full Text PDF

Background: Lenvatinib is an oral tyrosine kinase inhibitor that selectively inhib-its receptors involved in tumor angiogenesis and tumor growth. It is an emerging first-line treatment agent for hepatocellular carcinoma (HCC). However, there is no intravenous ad-ministration of Lenvatinib.

View Article and Find Full Text PDF

Background: Breast cancer is a frequently diagnosed malignant disease and the primary cause of mortality among women with cancer worldwide. The therapy options are influenced by the molecular subtype due to the intricate nature of the condition, which consists of various subtypes. By focusing on the activation of receptors, Epidermal Growth Factor Receptor (EGFR) tyrosine kinase can be utilized as an effective drug target for therapeutic purposes of breast cancer.

View Article and Find Full Text PDF

Background: Morphine, a mu-opioid receptor (MOR) agonist commonly utilized in clinical settings alongside chemotherapy to manage chronic pain in cancer patients, has exhibited contradictory effects on cancer, displaying specificity toward certain cancer types and doses.

Objective: The aim of this study was to conduct a systematic assessment and comparison of the impacts of morphine on three distinct cancer models in a preclinical setting.

Methods: Viability and apoptosis assays were conducted on a panel of cancer cell lines following treatment with morphine, chemotherapy drugs alone, or their combination.

View Article and Find Full Text PDF

Oral Biomimetic Nanotherapeutics for Ulcerative Colitis Targeted Treatment by Repairing Intestinal Epithelial Barrier and Restoring Redox Homeostasis.

ACS Appl Mater Interfaces

January 2025

Department of Pharmaceutics, School of Pharmacy, Ningxia Medical University, No. 1160 Shengli South Street, Yinchuan 750004, PR China.

The structural disruption of intestinal barrier and excessive reactive oxygen/nitrogen species (RONS) generation are two intertwined factors that drive the occurrence and development of ulcerative colitis (UC). Synchronously restoring the intestinal barrier and mitigating excess RONS is a promising strategy for UC management, but its treatment outcomes are still hindered by low drug accumulation and retention in colonic lesions. Inspired by intestine colonizing bacterium, we developed a mucoadhesive probiotic -mimic entinostat-loaded hollow mesopores prussian blue (HMPB) nanotherapeutic (AM@HMPB@E) for UC-targeted therapy via repairing intestinal barrier and scavenging RONS.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!