Glioblastoma multiforme (GBM) remains the most devastating neoplasm of the central nervous system and has a dismal prognosis. Ionizing radiation represents an effective therapy for GBM, but radiotherapy remains only palliative because of radioresistance. In this study, we demonstrate that glioma cells participate in tumor vascularization and contribute to vascular radioresistance. Using a 3-dimensional coculture system, we observed an intimate interaction of glioma cells with endothelial cells whereby endothelial cells form vascular structures, followed by the recruitment and vascular patterning of glioma cells. In addition, tumor cells stabilize the vascular structures and render them radioresistant. Blocking initial endothelial vascular formation with endothelial-specific inhibitors prevented tumor cells from forming any structures. However, these inhibitors exhibited minimum effects on vascular structures formed by tumor cells, due to the absence of the targeted receptors on tumor cells. Consistent with the in vitro findings, we show that glioma cells form perfused blood vessels in xenograft tumor models. Together, these data suggest that glioma cells mimic endothelial cells and incorporate into tumor vasculature, which may contribute to radioresistance observed in GBM. Therefore, interventions aimed at the glioma vasculature should take into consideration the chimeric nature of the tumor vasculature.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2932815 | PMC |
http://dx.doi.org/10.1002/ijc.25249 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!