A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Identification of kaempferol-regulated proteins in rat calvarial osteoblasts during mineralization by proteomics. | LitMetric

Kaempferol, a flavonoid, promotes osteoblast mineralization in vitro and bone formation in vivo; however, its mechanism of action is yet unknown. We adopted proteomic approach to identify the differential effect of kaempferol on rat primary calvarial osteoblasts during mineralization. The primary rat calvarial osteoblasts were treated with kaempferol (5.0 microM) for 9 days under mineralizing condition that resulted in significant increase in alkaline phosphatase activity and mineralization of the cells. Further, 2-D analysis of the kaempferol-treated osteoblast lysates revealed 18 differentially expressed proteins (nine upregulated and nine downregulated) on the basis of >/<2.0-fold as cut-off (p<0.01) that were then identified by MALDI-TOF MS. These included cytoskeletal proteins, intracellular signaling protein, chaperone, extracellular matrix protein, and proteins involved in glycolysis and cell-matrix interactions. Proteomics data were confirmed by Western blotting and quantitative real-time PCR by randomly selecting two upregulated and two downregulated proteins. Western blot analysis confirmed upregulation of HSP-70 and cytokeratin-14 levels, and downregulation of aldose reductase and caldesmon expression. We further demonstrated that kaempferol treatment inhibits aldose reductase activity in osteoblasts indicating an altered cellular metabolism by decelerating polyol pathway that was associated with the kaempferol-induced osteoblast mineralization. In conclusion, this is a first comprehensive study on the differential regulation of proteins by kaempferol in primary osteoblast, which would further help to elucidate the role of the identified proteins in the process of osteoblast mineralization.

Download full-text PDF

Source
http://dx.doi.org/10.1002/pmic.200900666DOI Listing

Publication Analysis

Top Keywords

calvarial osteoblasts
12
rat calvarial
8
osteoblasts mineralization
8
identification kaempferol-regulated
4
kaempferol-regulated proteins
4
proteins rat
4
mineralization
4
mineralization proteomics
4
proteomics kaempferol
4
kaempferol flavonoid
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!