Proteins possessing a C-terminal CaaX motif, such as the Ras GTPases, undergo extensive post-translational modification that includes attachment of an isoprenoid lipid, proteolytic processing and carboxylmethylation. Inhibition of the enzymes involved in these processes is considered a cancer-therapeutic strategy. We previously identified nine in vitro inhibitors of the yeast CaaX protease Rce1p in a chemical library screen (Manandhar et al., 2007). Here, we demonstrate that these agents disrupt the normal plasma membrane distribution of yeast GFP-Ras reporters in a manner that pharmacologically phenocopies effects observed upon genetic loss of CaaX protease function. Consistent with Rce1p being the in vivo target of the inhibitors, we observe that compound-induced delocalization is suppressed by increasing the gene dosage of RCE1. Moreover, we observe that Rce1p biochemical activity associated with inhibitor-treated cells is inversely correlated with compound dose. Genetic loss of CaaX proteolysis results in mistargeting of GFP-Ras2p to subcellular foci that are positive for the endoplasmic reticulum marker Sec63p. Pharmacological inhibition of CaaX protease activity also delocalizes GFP-Ras2p to foci, but these foci are not as strongly positive for Sec63p. Lastly, we demonstrate that heterologously expressed human Rce1p can mediate proper targeting of yeast Ras and that its activity can also be perturbed by some of the above inhibitors. Together, these results indicate that disrupting the proteolytic modification of Ras GTPases impacts their in vivo trafficking.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5871226PMC
http://dx.doi.org/10.1002/yea.1756DOI Listing

Publication Analysis

Top Keywords

caax protease
16
inhibition caax
8
protease activity
8
yeast ras
8
ras gtpases
8
genetic loss
8
loss caax
8
foci positive
8
caax
6
chemical inhibition
4

Similar Publications

Prenylated proteins are prevalent in eukaryotic biology (∼1-2% of proteins) and are associated with human disease, including cancer, premature aging and infections. Prenylated proteins with a C-terminal CaaX sequence are targeted by CaaX-type prenyltransferases and proteases. To aid investigations of these enzymes and their targets, we developed Saccharomyces cerevisiae strains that express these human enzymes instead of their yeast counterparts.

View Article and Find Full Text PDF

Ras GTPases and other CaaX proteins undergo multiple post-translational modifications at their carboxyl-terminus. These events initiate with prenylation of a cysteine and are followed by endoproteolytic removal of the 'aaX' tripeptide and carboxylmethylation. Some CaaX proteins are only subject to prenylation, however, due to the presence of an uncleavable sequence.

View Article and Find Full Text PDF

Identification of candidate genes associated with less-photosensitive anthocyanin phenotype using an EMS mutant () in eggplant ( L.).

Front Plant Sci

December 2023

State Key Laboratory of North China Crop Improvement and Regulation, Key Laboratory of Vegetable Germplasm Innovation and Utilization of Hebei, Collaborative Innovation Center of Vegetable Industry in Hebei, International Joint R & D Center of Hebei Province in Modern Agricultural Biotechnology, College of Horticulture, Hebei Agricultural University, Baoding, China.

Eggplant ( L.) is a highly nutritious and economically important vegetable crop. However, the fruit peel of eggplant often shows poor coloration owing to low-light intensity during cultivation, especially in the winter.

View Article and Find Full Text PDF

The LPXTG protein-sorting signal, found in surface proteins of various Gram-positive pathogens, was the founding member of a growing panel of prokaryotic small C-terminal sorting domains. Sortase A cleaves LPXTG, exosortases (XrtA and XrtB) cleave the PEP-CTERM sorting signal, archaeosortase A cleaves PGF-CTERM, and rhombosortase cleaves GlyGly-CTERM domains. Four sorting signal domains without previously known processing proteases are the MYXO-CTERM, JDVT-CTERM, Synerg-CTERM, and CGP-CTERM domains.

View Article and Find Full Text PDF

The assembly line biosynthesis of the powerful anticancer-antiviral didemnin cyclic peptides is proposed to follow a prodrug release mechanism in Tristella bacteria. This strategy commences with the formation of N-terminal prodrug scaffolds and culminates in their cleavage during the cellular export of the mature products. In this study, a comprehensive exploration of the genetic and biochemical aspects of the enzymes responsible for both the assembly and cleavage of the acylated peptide prodrug scaffolds is provided.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!