Ten Nigerian plants suggested from their ethnomedical uses to possess antimicrobial and antioxidant activities were studied for their anti-microbial and anti-oxidant properties. Antimicrobial activity was tested against Escherichia coli NCTC 10418, Pseudomonas aeruginosa, Staphylococcus aureus, Bacillus subtilis, Candida albicans, Candida pseudotropicalis and Trichophyton rubrum (clinical isolate). Trichilia heudelotti leaf extract showed both antibacterial and antifungal activities and was the most active against all the strains of bacteria tested. Boerhavia diffusa, Markhamia tomentosa and T. heudelotti leaf extracts inhibited the gram negative bacteria E. coli and P. aeruginosa strains whereas those of M. tomentosa, T. heudelotti and Sphenoceutrum jollyamum root inhibited at least one of the fungi tested. At a concentration of 312 microg/ml, hexane and chloroform fractions of T. heudelotti extract inhibited 6 and 14% of the fifty multi-drug resistant bacteria isolates from clinical infections, respectively. At < or = 5 mg/ml, the CHCl(3) (64%) and aqueous (22%) fractions of T. heudelotti and those of CHCl(3) (34%) and EtOAC (48%) of M. tomentosa gave the highest inhibition that was stronger than their corresponding methanol extracts. The corresponding EC(50) of the extracts on M. acuminata, T. heudelotti, E. senegalensis and M. tomentosa were 4.00, 6.50, 13.33, and 16.50 ig/ml using the TLC staining and 1,1-dipheyl-2-picry-hydrazyl (DPPH) free radical scavenging assay. Therefore, leaf extracts of M. tomentosa and T. heudelotti, especially the latter, possess strong antimicrobial and antioxidant activities and should be further investigated. These activities justified the ethnomedical uses of these plants.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2816440 | PMC |
http://dx.doi.org/10.4314/ajtcam.v4i2.31206 | DOI Listing |
J Biomol Struct Dyn
March 2025
Department of Chemistry, Jamia Millia Islamia, New Delhi, India.
1,3,4-Oxadiazole-based heterocyclic analogs (3a-3m) were synthesized cyclization of Schiff bases with substituted aldehydes in the presence of bromine and acetic acid. The structural clarification of synthesized molecules was carried out with various spectroscopic techniques such as FT-IR,H and C-NMR, UV-visible spectroscopy, and mass spectrometry. antifungal activity was performed against , and and analogs 3g, 3i, and 3m showed potent MIC at 200 µg/ml and excellent ZOI measurements of 17-21 nm.
View Article and Find Full Text PDFAdv Pharmacol Pharm Sci
January 2025
Division of Health and Applied Sciences, Faculty of Science, Prince of Songkla University, Songkhla 90110, Thailand.
Recently, seaweed extracts have been found to have potential in skin benefits. This study, therefore, aimed to explore phytochemical analysis, antimicrobial, antioxidant, and wound healing properties of brown seaweed ethanolic extract (SPEE) on human skin keratinocyte HaCaT cells and the possible mechanism involved. Our results indicated that SPEE contained flavonoid, phenolic, and carotenoid as the major active constituents.
View Article and Find Full Text PDFJ Nanobiotechnology
January 2025
Department of Dermatology and Venereology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325000, China.
Background: Both oxidative stress and autoimmune responses play crucial roles in the development of vitiligo. Under oxidative stress, the apoptotic melanocytes expose self-antigens and release high mobility group box 1 (HMGB1), triggering autoimmune activation and recruiting CD8 T cells. This process further leads to the destruction of melanocytes, resulting in the lack of melanin granules.
View Article and Find Full Text PDFMicrob Cell Fact
January 2025
College of Architecture and Environment, Sichuan University, Chengdu, 610065, Sichuan, China.
Background: Continuous fermentation offers advantages in improving production efficiency and reducing costs, making it highly competitive for industrial ethanol production. A key requirement for Saccharomyces cerevisiae strains used in this process is their tolerance to high ethanol concentrations, which enables them to adapt to continuous fermentation conditions. To explore how yeast cells respond to varying levels of ethanol stress during fermentation, a two-month continuous fermentation was conducted.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Jouf University, Sakaka, Saudi Arabia.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!