Sequence-dependent gelation kinetics of β-hairpin peptide hydrogels.

Macromolecules

Department of Chemical Engineering and Center for Molecular and Engineering Thermodynamics, University of Delaware, 150 Academy Street, Newark, Delaware 19716, USA.

Published: November 2009

The gelation kinetics of four β-hairpin oligopeptides that have been designed to exhibit responsive behavior to changes in environmental conditions, such as pH, ionic strength and temperature, are characterized using multiple particle tracking microrheology and circular dichroism (CD) spectroscopy. The peptides, predominantly an alternating sequence of valine and lysine residues, differ by a point substitution of a single amino acid near a type II'β-turn sequence. The rate of gelation becomes faster for point substitutions which reduce the total charge of the peptide. Similarly, increasing the ionic strength reduces or screens intra- and inter-molecular electrostatic repulsions, again leading to faster gelation kinetics. CD measurements show that the concentration of folded peptide at the gel point decreases as the gelation kinetics become slower, possibly indicating a relationship between the assembly rate and the resulting gel microstructure. Finally, a model is developed based on the electrostatic barrier to peptide folding and association which agrees semi-quantitatively with the microrheology results. This represents a first step towards understanding the role of peptide charge and physico-chemical conditions in the self-assembly of these peptide hydrogelators.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2791542PMC
http://dx.doi.org/10.1021/ma901423nDOI Listing

Publication Analysis

Top Keywords

gelation kinetics
16
kinetics β-hairpin
8
ionic strength
8
peptide
6
sequence-dependent gelation
4
kinetics
4
β-hairpin peptide
4
peptide hydrogels
4
gelation
4
hydrogels gelation
4

Similar Publications

Effects of Hydroxyapatite Additions on Alginate Gelation Kinetics During Cross-Linking.

Polymers (Basel)

January 2025

Department of Chemical and Metallurgical Engineering, School of Chemical Engineering, Aalto University, 02150 Espoo, Finland.

Alginate hydrogels have gathered significant attention in biomedical engineering due to their remarkable biocompatibility, biodegradability, and ability to encapsulate cells and bioactive molecules, but much less has been reported on the kinetics of gelation. Scarce experimental data are available on cross-linked alginates (AL) with bioactive components. The present study addressed a novel method for defining the crosslinking mechanism using rheological measurements for aqueous mixtures of AL and calcium chloride (CaCl) with the presence of hydroxyapatite (HAp) as filler particles.

View Article and Find Full Text PDF

Thermosensitive Porcine Myocardial Extracellular Matrix Hydrogel Coupled with Proanthocyanidins for Cardiac Tissue Engineering.

Gels

January 2025

Laboratory of Immunotherapy and Tissue Engineering, Department of Cellular and Tissue Biology, Faculty of Medicine, National Autonomous University of Mexico, Av. Universidad 3000, Copilco Universidad, Coyoacán, Ciudad de México 04510, Mexico.

Currently, there are no therapies that prevent the negative myocardial remodeling process that occurs after a heart attack. Injectable hydrogels are a treatment option because they may replace the damaged extracellular matrix and, in addition, can be administered minimally invasively. Reactive oxygen species generated by ischemia-reperfusion damage can limit the therapeutic efficacy of injectable hydrogels.

View Article and Find Full Text PDF

Fungal keratitis is a severe ocular infection caused by pathogenic fungi, leading to potential vision loss if untreated. Current antifungal treatments face limitations such as low solubility, poor corneal penetration, and limited therapeutic options. This study aimed to develop a thermosensitive in situ gel incorporating ketoconazole nanoparticles (NPs) to enhance drug solubility, stability, and antifungal activity.

View Article and Find Full Text PDF

Injectable biomaterials, such as thermosensitive chitosan (CH)-based hydrogels, present a highly translational potential in dentistry due to their minimally invasive application, adaptability to irregular defects/shapes, and ability to carry therapeutic drugs. This work explores the incorporation of azithromycin (AZI) into thermosensitive CH hydrogels for use as an intracanal medication in regenerative endodontic procedures (REPs). The morphological and chemical characteristics of the hydrogel were assessed by scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS), and Fourier transform infrared spectroscopy (FTIR).

View Article and Find Full Text PDF

Triple circularly polarized luminescence of phenylalanine-based supramolecular gels regulated by kinetic and thermodynamic assembly pathways.

Chem Commun (Camb)

January 2025

State Key Laboratory of Bio-fibers and Eco-textiles, College of Materials Science and Engineering, Key Laboratory of Shandong Provincial Universities for Advanced Fibers and Composites, Qingdao University, Qingdao, 266071, P. R. China.

A single phenylalanine-based gelator can self-assemble into various chiral nanostructures with triple circularly polarized luminescence (CPL). Its supramolecular assembly and CPL emission are found to be dependent on the kinetic and thermodynamic pathways. This work provides new insight into the regulation of CPL-active functional materials.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!