The mechanism of the (bis(phosphanylethyl)phosphane)Pt(2+) catalyzed cyclo-isomerization reaction of 7-methyl-octa-1,6-diene to form 1-isopropylbicyclo[3.1.0]hexane was studied using computational methods. The cyclopropanation step was found to be the turnover-limiting step. The overall reaction proceeds via both a 5-exo and a 6-endo route. W conformations were shown to facilitate cyclopropanation, but do not have any influence on the rate of the 1,2-hydride shifts.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2700740PMC
http://dx.doi.org/10.1021/om800760xDOI Listing

Publication Analysis

Top Keywords

computational studies
4
studies ptii-catalyzed
4
ptii-catalyzed cycloisomerization
4
cycloisomerization 16-dienes
4
16-dienes bicyclopropanes
4
bicyclopropanes mechanistic
4
mechanistic quandary
4
quandary evaluated
4
evaluated dft
4
dft mechanism
4

Similar Publications

Background: Oxidative stress is strongly linked to neurodegeneration through the activation of c-Abl kinase, which arrests α-synuclein proteolysis by interacting with parkin interacting substrate (PARIS) and aminoacyl tRNA synthetase complex-interacting multifunctional protein 2 (AIMP2). This activation, triggered by ataxia-telangiectasia mutated (ATM) kinase, leads to dopaminergic neuron loss and α-synuclein aggregation, a critical pathophysiological aspect of Parkinson's disease (PD). To halt PD progression, pharmacological inhibition of c-Abl kinase is essential.

View Article and Find Full Text PDF

Objective: The aim of this study was to develop and validate predictive models for perineural invasion (PNI) in gastric cancer (GC) using clinical factors and radiomics features derived from contrast-enhanced computed tomography (CE-CT) scans and to compare the performance of these models.

Methods: This study included 205 GC patients, who were randomly divided into a training set (n=143) and a validation set (n=62) in a 7:3 ratio. Optimal radiomics features were selected using the least absolute shrinkage and selection operator (LASSO) algorithm.

View Article and Find Full Text PDF

Density functional theory has been employed to study indolo[3,2,1-]carbazole donor-based dyes, incorporating one and two units of 2,4-dimethoxybenzene auxiliary donors. Electrostatic potential analysis highlights the dye with one auxiliary donor (D2) as having the highest charge-donating capability. Structural analysis shows that auxiliary donors enhance planarity, reduce steric hindrance, and improve π-conjugation.

View Article and Find Full Text PDF

Target identification is crucial for drug screening and development because it can reveal the mechanism of drug action and ensure the reliability and accuracy of the results. Chemical biology, an interdisciplinary field combining chemistry and biology, can assist in this process by studying the interactions between active molecular compounds and proteins and their physiological effects. It can also help predict potential drug targets or candidates, develop new biomarker assays and diagnostic reagents, and evaluate the selectivity and range of active compounds to reduce the risk of off-target effects.

View Article and Find Full Text PDF

Self-assembly of amino acids and short-peptide derivatives attracted significant curiosity worldwide due to their unique self-assembly process and wide variety of applications. Amino acid is considered one of the important synthons in supramolecular chemistry. Self-assembly processes and applications of unfunctionalized native amino acids have been less reported in the literature.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!