It is becoming increasingly apparent that the architecture and mechanical properties of scaffolds, particularly with respect to mimicking features of natural tissues, are important for tissue engineering applications. Acrylated poly(glycerol sebacate) (Acr-PGS) is a material that can be cross-linked upon exposure to ultraviolet light, leading to networks with tunable mechanical and degradation properties through simple changes during Acr-PGS synthesis. For example, the number of acrylate functional groups on the macromer dictates the concentration of cross-links formed in the resulting network. Three macromers were synthesized that form networks that vary dramatically with respect to their tensile modulus ( approximately 30 kPa to 6.6 MPa) and degradation behavior ( approximately 20-100% mass loss at 12 weeks) based on the extent of acrylation ( approximately 1-24%). These macromers were processed into biodegradable fibrous scaffolds using electrospinning, with gelatin as a carrier polymer to facilitate fiber formation and cell adhesion. The resulting scaffolds were also diverse with respect to their mechanics (tensile modulus ranging from approximately 60 kPa to 1 MPa) and degradation ( approximately 45-70% mass loss by 12 weeks). Mesenchymal stem cell adhesion and proliferation on all fibrous scaffolds was indistinguishable from those of controls. The scaffolds showed similar diversity when implanted on the surface of hearts in a rat model of acute myocardial infarction and demonstrated a dependence on the scaffold thickness and chemistry in the host response. In summary, these diverse scaffolds with tailorable chemical, structural, mechanical, and degradation properties are potentially useful for the engineering of a wide range of soft tissues.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2765054 | PMC |
http://dx.doi.org/10.1021/am900403k | DOI Listing |
ACS Biomater Sci Eng
January 2025
School of Biological Sciences, Indian Association for the Cultivation of Science, 2A & 2B Raja S. C. Mullick Road, Jadavpur, Kolkata 700032, India.
Melanoma, an aggressive skin cancer originating from melanocytes, presents substantial challenges due to its high metastatic potential and resistance to conventional therapies. Hydrogels, 3D networks of hydrophilic polymers with high water-retention capacities, offer significant promise for controlled drug delivery applications. In this study, we report the synthesis and characterization of hydrogelators based on the triazine molecular scaffold, which self-assemble into fibrous networks conducive to hydrogel formation.
View Article and Find Full Text PDFJ Funct Biomater
December 2024
Department of Pharmacology and Toxicology, School of Biomedical Sciences, University of Otago, Dunedin 9054, New Zealand.
Scaffolds resembling the extracellular matrix (ECM) provide structural support for cells in the engineering of tissue constructs. Various material sources and fabrication techniques have been employed in scaffold production. Cellulose-based matrices are of interest due to their abundant supply, hydrophilicity, mechanical strength, and biological inertness.
View Article and Find Full Text PDFJ Biomed Mater Res A
January 2025
Ovcharenko Institute of Biocolloidal Chemistry of the Ukrainian National Academy of Sciences of Ukraine, Kyiv, Ukraine.
This study presents an innovative approach to improve implant biointegration and reduce implant-associated infections using porous poly(vinyl formal) nanocomposite matrices incorporated with gold nanoparticles and antimicrobial/anticancer drugs for plastic surgery applications. The porous matrices were characterized using physicochemical techniques and in vitro biochemical assays. The results demonstrated the biocompatibility of PVF nanocomposites and their potential for functionalization with various bioactive molecules and drugs, thereby enhancing their therapeutic efficacy.
View Article and Find Full Text PDFCurr Protoc
December 2024
Department of Biomedical Engineering, Tufts University, Medford, Massachusetts.
Biomater Sci
December 2024
Central Laboratory, The Fifth Affiliated Hospital, Southern Medical University, Guangzhou, Guangdong 510910, China.
Myocardial infarction (MI) remains one of the most common and lethal cardiovascular diseases (CVDs), leading to the deterioration of cardiac function due to myocardial cell necrosis and fibrous scar tissue formation. Myocardial infarction (MI) remains one of the most common and lethal cardiovascular diseases (CVDs), leading to the deterioration of cardiac function due to myocardial cell necrosis and fibrous scar tissue formation. After MI, the anisotropic structural properties of myocardial tissue are destroyed, and its mechanical and electrical microenvironment also undergoes a series of pathological changes, such as ventricular wall stiffness, abnormal contraction, conduction network disruption, and irregular electrical signal propagation, which may further induce myocardial remodeling and even lead to heart failure.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!