The amount of biosequence data being produced each year is growing exponentially. Extracting useful information from this massive amount of data efficiently is becoming an increasingly difficult task. There are many available software tools that molecular biologists use for comparing genomic data. This paper focuses on accelerating the most widely used such tool, BLAST. Mercury BLAST takes a streaming approach to the BLAST computation by off loading the performance-critical sections to specialized hardware. This hardware is then used in combination with the processor of the host system to deliver BLAST results in a fraction of the time of the general-purpose processor alone.This paper presents the design of the ungapped extension stage of Mercury BLAST. The architecture of the ungapped extension stage is described along with the context of this stage within the Mercury BLAST system. The design is compact and runs at 100 MHz on available FPGAs, making it an effective and powerful component for accelerating biosequence comparisons. The performance of this stage is 25× that of the standard software distribution, yielding close to 50× performance improvement on the complete BLAST application. The sensitivity is essentially equivalent to that of the standard distribution.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2771927 | PMC |
http://dx.doi.org/10.1016/j.micpro.2009.02.007 | DOI Listing |
Materials (Basel)
January 2025
Guizhou Provincial Architectural Design & Research Institute Co., Ltd., Guiyang 550025, China.
Electrolytic manganese residue (EMR) is a solid waste generated during the production of electrolytic manganese metal through wet metallurgy, accumulating in large quantities and causing significant environment pollution. Due to its high sulfate content, EMR can be utilized to prepare supersulfate cement when combined with Ground Granulated Blast furnace Slag (GGBS). In this process, GGBS serves as the primary raw material, EMR acts as the sulfate activator, and CaO powder, along with trace amounts of cement, functions as the alkali activator.
View Article and Find Full Text PDFEnviron Sci Pollut Res Int
January 2025
Savannah River National Laboratory, Aiken, SC, USA.
Liquid low-level radioactive waste at the Savannah River Site contains several species of mercury, including inorganic, elemental, and methylmercury. This waste is solidified and stabilized in a cementitious waste form referred to as saltstone. Soluble mercury is stabilized as β-cinnabar, HgS as the result of reaction between the mercury and sulfur present in blast furnace slag, one of the cementitious reagents.
View Article and Find Full Text PDFJ Environ Manage
December 2024
State Key Laboratory of Clean Energy Utilization, Zhejiang University, Hangzhou, 310027, China. Electronic address:
Materials (Basel)
October 2024
Cangzhou Municipal Engineering Company Ltd., Cangzhou 061000, China.
J Hazard Mater
December 2024
School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China. Electronic address:
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!