EGF induces signal transduction between EGFR and FAK, and FAK is required for EGF-induced cell migration. It is unknown, however, what factor mediates the interaction between EGFR and FAK and leads to EGF-induced FAK phosphorylation. Here, we identify SRC-3Delta4, a splicing isoform of the SRC-3 oncogene, as a signaling adaptor that links EGFR and FAK and promotes EGF-induced phosphorylations of FAK and c-Src. We identify three PAK1-mediated phosphorylations in SRC-3Delta4 that promote the localization of SRC-3Delta4 to the plasma membrane and mediate the interactions with EGFR and FAK. Importantly, overexpression of SRC-3Delta4 promotes MDA-MB231-induced breast tumor metastasis. Our findings identify phosphorylated SRC-3Delta4 as a missing adaptor between EGFR and its downstream signaling molecule FAK to coordinately regulate EGF-induced cell migration. Our study also reveals that a nuclear receptor coactivator can act in the periphery of a cell to directly mediate activation of an enzyme.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2824333PMC
http://dx.doi.org/10.1016/j.molcel.2010.01.004DOI Listing

Publication Analysis

Top Keywords

egfr fak
20
cell migration
12
fak
9
mediates interaction
8
interaction egfr
8
egf-induced cell
8
src-3delta4
6
egfr
6
src-3delta4 mediates
4
fak promote
4

Similar Publications

Tamoxifen (TAM) is employed to treat premenopausal ER-positive breast cancer patients, but TAM resistance is the main reason affecting its efficacy. Thus, addressing TAM resistance is crucial for improving therapeutic outcomes. This study explored the potential role of Tinagl1, a secreted extracellular matrix protein, whose expression is compromised in TAM-resistant MCF-7 breast cancer cells (MCF-7R).

View Article and Find Full Text PDF

The emergence of epidermal growth factor receptor tyrosine kinase inhibitors (EGFR-TKIs) has improved the prognosis for lung cancer patients with EGFR-driven mutations. However, acquired resistance to EGFR-TKIs poses a significant challenge to the treatment. Overcoming the resistance has primarily focused on developing next-generation targeted therapies based on the molecular mechanisms of resistance or inhibiting the activation of bypass pathways to suppress or reverse the resistance.

View Article and Find Full Text PDF
Article Synopsis
  • Incessant ovulation contributes to ovarian high-grade serous carcinomas (HGSC), which primarily arise from the fallopian tube epithelium (FTE), and receptor tyrosine kinase (RTK) ligands play a key role in this process.
  • A study investigated follicular fluid exosomes from women undergoing in vitro fertilization to identify RTK ligands and their impact on FTE cells, using various RTK inhibitors.
  • The findings revealed that FF exosomes were rich in transformative abilities and essential EGFR ligands, promoting cell growth and migration, indicating their significant contribution to HGSC development.
View Article and Find Full Text PDF

SPTLC2 drives an EGFR-FAK-HBEGF signaling axis to promote ovarian cancer progression.

Oncogene

December 2024

Institute of Cancer Stem Cell, Dalian Medical University Cancer Center, No. 9 West Section, South Lvshun Road, Dalian, 116044, China.

The epidermal growth factor receptor (EGFR) signaling pathway is frequently associated with ovarian cancer (OC) progression. However, inhibition of EGFR signaling in OC patients achieved limited therapeutic effects, highlighting the need to define the mechanism of EGFR deregulation in OC development. Herein we showed that serine palmitoyltransferase long chain base subunit 2 (SPTLC2) acts as a positive regulator in the EGFR signaling pathway in OC.

View Article and Find Full Text PDF

Recent years have witnessed notable breakthroughs in the field of biotherapeutics. Proteolysis Targeting Chimeras (PROTACs) are novel molecules which used to degrade particular proteins despite the blockage by small drug molecules, which leads to a predicted therapeutic activity. This is a unique finding, especially at the cellular level targets degradations.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!