Virulence mechanisms displayed by Salmonella to impair dendritic cell function.

Curr Med Chem

Departamento de Genética Molecular y Microbiología, Pontificia Universidad Católica de Chile, Santiago, Chile.

Published: October 2010

Dendritic cells (DCs) link innate and adaptive immunity by directly recognizing pathogen-associated molecular patterns (PAMPs) on bacteria. DCs can capture and degrade bacteria and present their antigens on MHC molecules to T cells. PAMP recognition promotes DC maturation, a phenotypic change that empowers them to prime naïve T cells. As a result, an adaptive immune response that specifically targets bacteria-derived antigens is initiated. Consequently, any impairment of DC function might contribute to bacterial survival and dissemination in the host. Therefore, the characterization of DC-bacteria interactions is required to understand the mechanisms used by virulent bacteria to avoid adaptive immunity. An example of a bacterial pathogen capable of interfering with DC function is Salmonella enterica serovar Typhimurium (S. Typhimurium), which causes a typhoid-like disease in mice. Virulent strains of S. Typhimurium are able to differentially modulate the entrance to DCs and avoid lysosomal degradation, to prevent antigen presentation on MHC molecules. These features of virulent S. Typhimurium are controlled by virulence factors encoded by Salmonella Pathogenicity Islands 1 and 2. Modulation of DC functions by the activity of these gene products is supported by several recent studies, which have shown that pathogenesis might depend on this attribute of virulent S. Typhimurium. Here we discuss recent data showing that several virulence factors from Salmonella are required to differentially modulate DC function and adaptive immunity in the host.

Download full-text PDF

Source
http://dx.doi.org/10.2174/092986710790827825DOI Listing

Publication Analysis

Top Keywords

adaptive immunity
12
mhc molecules
8
differentially modulate
8
virulent typhimurium
8
virulence factors
8
typhimurium
5
virulence mechanisms
4
mechanisms displayed
4
salmonella
4
displayed salmonella
4

Similar Publications

The persistent emergence of COVID-19 variants and recurrent waves of infection worldwide underscores the urgent need for vaccines that effectively reduce viral transmission and prevent infections. Current intramuscular (IM) COVID-19 vaccines inadequately protect the upper respiratory mucosa. In response, we have developed a nonadjuvanted, interferon-armed SARS-CoV-2 fusion protein vaccine with IM priming and intranasal (IN) boost sequential immunization.

View Article and Find Full Text PDF

B-cell acute lymphoblastic leukemia (B-ALL) is the most common form of cancer diagnosed in children. While the majority of patients survive with conventional treatment, chemotherapeutic agents have adverse effects and the potential for relapse persists even after full recovery. Given their pivotal function in anti-cancer immunity, there has been a surge in research exploring the potential of natural killer (NK) cells in immunotherapy, which has emerged as a promising avenue for treating leukemia.

View Article and Find Full Text PDF

is a fungal pathogen that can cause lethal disease in immunocompromised patients. Immunocompetent host immune responses, such as formation of pulmonary granulomas, control the infection and prevent disseminated disease. Little is known about the immunological conditions establishing the latent infection granuloma in the lungs.

View Article and Find Full Text PDF

COVID-19 remains a significant global health problem with uncertain long-term consequences for convalescents. We investigated the relationships between anti-N protein antibody levels, severe acute respiratory syndrome (SARS)-CoV-2-associated TCR repertoire parameters, HLA type and epidemiological information from three cohorts of 524 SARS-CoV-2-infected subjects subgrouped in acute phase, seronegative and seropositive convalescents from the Emilia Romagna region. Epidemiological information and anti-N antibody index were associated with TCR repertoire data.

View Article and Find Full Text PDF

A humanized anti-MSLN×4-1BB bispecific antibody exhibits potent antitumour activity through 4-1BB signaling activation and fc function without systemic toxicity.

J Transl Med

January 2025

Department of Medical Oncology, Division of Life Sciences and Medicine, The First Affiliated Hospital of USTC, University of Science and Technology of China, Anhui Provincial Cancer Hospital, Hefei, 230031, Anhui, China.

Background: Agonistic monoclonal antibodies targeting 4-1BB/CD137 have shown preclinical promise, but their clinical development has been limited by severe liver toxicity or limited efficacy. Therefore, a safe and efficient immunostimulatory molecule is urgently needed for cancer immunotherapy.

Methods: A novel anti-MSLN×4-1BB bispecific antibody (bsAb) was generated via antibody engineering, and its affinity and activity were detected via enzyme-linked immunosorbent assay (ELISA), flow cytometry, and T-cell activation and luciferase reporter assays.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!