Biomimetic syntheses of the neurotrophic natural products caryolanemagnolol and clovanemagnolol.

Org Lett

Department of Chemistry and Biochemistry, The University of Texas at Austin, 1 University Station, Austin Texas 78712, USA.

Published: March 2010

Separate short and modular syntheses of the isomeric natural products caryolanemagnolol and clovanemagnolol have been achieved starting from commercially available (-)-caryophyllene. The postulated biosynthetic pathways guided the syntheses of the neuroregenerative small molecules allowing their assembly in as few as two steps.

Download full-text PDF

Source
http://dx.doi.org/10.1021/ol100214xDOI Listing

Publication Analysis

Top Keywords

natural products
8
products caryolanemagnolol
8
caryolanemagnolol clovanemagnolol
8
biomimetic syntheses
4
syntheses neurotrophic
4
neurotrophic natural
4
clovanemagnolol separate
4
separate short
4
short modular
4
modular syntheses
4

Similar Publications

For over a century African swine fever (ASF) has been causing outbreaks leading to devastating losses for the swine industry. The current pandemic of ASF has shown no signs of stopping and continues to spread causing outbreaks in additional countries. Currently control relies mostly on culling infected farms, and strict biosecurity procedures.

View Article and Find Full Text PDF

Triphala is a traditional Ayurvedic herbal formulation composed of three fruits: amla (Phyllanthus emblica), bibhitaki (Terminalia bellerica), and haritaki (Terminalia chebula). Triphala is a potent Ayurvedic remedy that promotes digestion, detoxification, and overall wellness, while also providing antioxidant benefits through its trio of nutrient-rich fruits. In order to elucidate the individual contributions of the three ingredients of Triphala from molecular perspective, the individual ingredients were used for the untargeted LCMS/MS analysis.

View Article and Find Full Text PDF

Total synthesis and target identification of marine cyclopiane diterpenes.

Nat Commun

December 2024

Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, Yangling, Shaanxi, 712100, China.

Marine cyclopianes are a family of diterpenoid with novel carbon skeleton and diverse biological activities. Herein, we report our synthetic and chemical proteomics studies of cyclopiane diterpenes which culminate in the asymmetric total synthesis of conidiogenones C, K and 12β-hydroxy conidiogenone C, and identification of Immunity-related GTPase family M protein 1 (IRGM1) as a cellular target. Our asymmetric synthesis commences from Wieland-Miescher ketone and features a sequential intramolecular Pauson-Khand reaction and gold-catalyzed Nazarov cyclization to rapidly construct the 6-5-5-5 tetracyclic skeleton.

View Article and Find Full Text PDF

E-cigarette/vaping-associated lung injury (EVALI) is strongly associated with vitamin E acetate and often occurs with concomitant tetrahydrocannabinol (THC) use. To uncover pathways associated with EVALI, we examined cytokines, transcriptomic signatures, and lipidomic profiles in bronchoalveolar lavage fluid (BALF) from THC-EVALI patients. At a single center, we prospectively enrolled mechanically ventilated patients with EVALI from THC-containing products (N = 4) and patients with non-vaping acute lung injury and airway controls (N = 5).

View Article and Find Full Text PDF

Artificial intelligence-driven rational design of ionizable lipids for mRNA delivery.

Nat Commun

December 2024

State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, China.

Lipid nanoparticles (LNPs) have proven effective in mRNA delivery, as evidenced by COVID-19 vaccines. Its key ingredient, ionizable lipids, is traditionally optimized by inefficient and costly experimental screening. This study leverages artificial intelligence (AI) and virtual screening to facilitate the rational design of ionizable lipids by predicting two key properties of LNPs, apparent pKa and mRNA delivery efficiency.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!