Activity of armillarisin B in vitro against plant pathogenic fungi.

Z Naturforsch C J Biosci

College of Life Sciences, Henan Agricultural University, Zhengzhou 450002, P. R. China

Published: April 2010

The methanolic extract of the fruiting bodies of the mushroom Armillariella tabescens was found to show antifungal activity against Gibberella zeae. The active compound was isolated from the fruiting bodies of A. tabescens by bioassay-guided fractionation of the extract and identified as armillarisin B. Armillarisin B eventually corresponds to 2-hydroxy-2-phenylpropanediamide and its structure was confirmed on the basis of spectroscopic studies including 2D NMR experiments.

Download full-text PDF

Source
http://dx.doi.org/10.1515/znc-2009-11-1206DOI Listing

Publication Analysis

Top Keywords

fruiting bodies
8
activity armillarisin
4
armillarisin vitro
4
vitro plant
4
plant pathogenic
4
pathogenic fungi
4
fungi methanolic
4
methanolic extract
4
extract fruiting
4
bodies mushroom
4

Similar Publications

Introduction: China is rich in straw resources. The utilization of straw in the cultivation of edible fungi partially resolves the resource conflicts between mushroom cultivation and forest industry and also contributes to environmental protection.

Methods: In this study, based on the technology of replacing wood by grass, the straw formula for mycelial culture of was optimized with Simplex-lattice method commonly used in mixture design.

View Article and Find Full Text PDF

The WRINKLED1 (WRI1) transcription factor controls carbon flow in plants through regulating the expression of glycolysis and fatty acid biosynthesis genes. The role of Gossypium hirsutum WRINKLED1 (GhWRI1) in seed-oil accumulation still needs to be explored. Multiple sequence alignment of WRI1 proteins confirmed the presence of two conserved AP2 domains.

View Article and Find Full Text PDF

Characterization of Endofungal Bacteria and Their Role in the Ectomycorrhizal Fungus .

J Fungi (Basel)

December 2024

State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China.

, an ectomycorrhizal fungus, forms a symbiotic relationship with , a rare and endangered species crucial to desert riparian ecosystems. In this study, endofungal bacteria (EFBs) within the fruiting bodies of were confirmed by a polyphasic approach, including genomic sequencing, real-time quantitative PCR targeting the 16S rRNA gene, full-length and next-generation sequencing (NGS) of the 16S rRNA gene, and culture methods. The genera , , , and were abundant in the EFBs of fruiting bodies associated with three hosts and were consistently present across different developmental stages.

View Article and Find Full Text PDF

This research aims to investigate the heavy metals (i.e., Cd, Cr, Cu, Ni, and Pb) in the fruiting bodies of six indigenous wild edible mushrooms including , , , , , and , correlated with various factors, such as the growth substrate, the sampling site, the species and the morphological part (i.

View Article and Find Full Text PDF

Diversity of Species Associated with Trunk Diseases of (Peach) in Northern China.

J Fungi (Basel)

December 2024

State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China.

Peach () is widely cultivated in China, but fungal diseases, particularly Cytospora canker, significantly impact tree health, reducing fruit yield and economic value. This disease mainly weakens tree branches and trunks, sometimes leading to tree death. There are no updated studies on the diversity of species associated with peach Cytospora canker in northern China.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!