Measuring excess free energies of self-assembled membrane structures.

Faraday Discuss

Institut für Theoretische Physik, Georg-August-Universität, 37073 Göttingen, Germany.

Published: March 2010

Using computer simulation of a solvent-free, coarse-grained model for amphiphilic membranes, we study the excess free energy of hourglass-shaped connections (i.e., stalks) between two apposed bilayer membranes. In order to calculate the free energy by simulation in the canonical ensemble, we reversibly transfer two apposed bilayers into a configuration with a stalk in three steps. First, we gradually replace the intermolecular interactions by an external, ordering field. The latter is chosen such that the structure of the non-interacting system in this field closely resembles the structure of the original, interacting system in the absence of the external field. The absence of structural changes along this path suggests that it is reversible; a fact which is confirmed by expanded-ensemble simulations. Second, the external, ordering field is changed as to transform the non-interacting system from the apposed bilayer structure to two-bilayers connected by a stalk. The final external field is chosen such that the structure of the non-interacting system resembles the structure of the stalk in the interacting system without a field. On the third branch of the transformation path, we reversibly replace the external, ordering field by non-bonded interactions. Using expanded-ensemble techniques, the free energy change along this reversible path can be obtained with an accuracy of 10(-3)k(B)T per molecule in the n VT-ensemble. Calculating the chemical potential, we obtain the free energy of a stalk in the grandcanonical ensemble, and employing semi-grandcanonical techniques, we calculate the change of the excess free energy upon altering the molecular architecture. This computational strategy can be applied to compute the free energy of self-assembled phases in lipid and copolymer systems, and the excess free energy of defects or interfaces.

Download full-text PDF

Source
http://dx.doi.org/10.1039/b901657kDOI Listing

Publication Analysis

Top Keywords

free energy
28
excess free
16
external ordering
12
ordering field
12
non-interacting system
12
free
8
apposed bilayer
8
field chosen
8
chosen structure
8
structure non-interacting
8

Similar Publications

The welding of titanium alloys is an important topic in today's industrial field, and the interaction between the solder and the base material is crucial for the quality of the welded parts. The structural, elastic, electronic, and thermal properties of Ti-Al-Me (Me = Cu, Fe and Ni) alloys (TAMs) with the face-centered cubic structures were investigated using plane-wave pseudo potential method in the framework of density functional theory. Based on the calculated elastic constants combined with empirical and semi-empirical formulas, physical properties including ductility/brittleness, hardness and anisotropy were calculated.

View Article and Find Full Text PDF

Heat stress (HS) is an impactful condition in ruminants that negatively affects their physiological and rumen microbial composition. However, a fundamental understanding of metabolomic and metataxonomic mechanisms in goats under HS conditions is lacking. Here, we analyzed the rumen metabolomics, metataxonomics, and serum metabolomics of goats (n = 10, body weight: 41.

View Article and Find Full Text PDF

It has been argued that realistic models of (singularity-free) black holes (BHs) embedded within an expanding Universe are coupled to the large-scale cosmological dynamics, with striking consequences, including pure cosmological growth of BH masses. In this pilot study, we examine the consequences of this growth for the stochastic gravitational wave background (SGWB) produced by inspiraling supermassive cosmologically coupled BHs. We show that the predicted SGWB amplitude is enhanced relative to the standard uncoupled case, while maintaining the [Formula: see text] frequency scaling of the spectral energy density.

View Article and Find Full Text PDF

Drug-drug co-amorphous systems are a promising approach to improve the aqueous solubility of poorly water-soluble drugs. This study explores the combination of breviscapine (BRE) and matrine (MAT) form an amorphous salt, aiming to synergistically enhance the solubility and dissolution of BRE. In silico analysis of electrostatic potential and local ionization energy were conducted on BRE-MAT complex to predict the intermolecular interactions, and solvent-free energies were calculated using thermodynamic integration and density functional theory.

View Article and Find Full Text PDF

Microtubules are dynamic cytoskeletal structures essential for cell architecture, cellular transport, cell motility, and cell division. Due to their dynamic nature, known as dynamic instability, microtubules can spontaneously switch between phases of growth and shortening. Disruptions in microtubule functions have been implicated in several diseases, including cancer, neurodegenerative disorders such as Alzheimer's and Parkinson's disease, and birth defects.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!