Yeast mother cell-specific aging constitutes a model of replicative aging as it occurs in stem cell populations of higher eukaryotes. Here, we present a new long-lived yeast deletion mutation,afo1 (for aging factor one), that confers a 60% increase in replicative lifespan. AFO1/MRPL25 codes for a protein that is contained in the large subunit of the mitochondrial ribosome. Double mutant experiments indicate that the longevity-increasing action of the afo1 mutation is independent of mitochondrial translation, yet involves the cytoplasmic Tor1p as well as the growth-controlling transcription factor Sfp1p. In their final cell cycle, the long-lived mutant cells do show the phenotypes of yeast apoptosis indicating that the longevity of the mutant is not caused by an inability to undergo programmed cell death. Furthermore, the afo1 mutation displays high resistance against oxidants. Despite the respiratory deficiency the mutant has paradoxical increase in growth rate compared to generic petite mutants. A comparison of the single and double mutant strains for afo1 and fob1 shows that the longevity phenotype of afo1 is independent of the formation of ERCs (ribosomal DNA minicircles). AFO1/MRPL25 function establishes a new connection between mitochondria, metabolism and aging.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2806038PMC
http://dx.doi.org/10.18632/aging.100065DOI Listing

Publication Analysis

Top Keywords

large subunit
8
double mutant
8
afo1 mutation
8
mutant
5
mitochondrial
4
mitochondrial ribosomal
4
ribosomal protein
4
protein large
4
subunit afo1p
4
afo1p determines
4

Similar Publications

Co-occurrence patterns between Chlorophyta and nucleocytoplasmic large DNA virus in coastal ecosystem, South Korea.

Mar Environ Res

January 2025

Library of Marine Samples, Korea Institute of Ocean Science & Technology, Geoje, 53201, Republic of Korea; Department of Ocean Science, University of Science & Technology, Daejeon, 34113, Republic of Korea. Electronic address:

Nucleocytoplasmic large DNA viruses (NCLDVs) are known to infect phytoplankton and play a significant role in regulating their population dynamics. In this study, we aimed to investigate the co-occurrence patterns between phytoplankton and NCLDVs in the southern coastal ecosystem of South Korea. We collected seawater every month from March 2018 to December 2020 and analyzed the samples using Cytochrome c Oxidase subunit I metabarcoding and metagenomic analyses.

View Article and Find Full Text PDF

Marine natural products show a large variety of unique chemical structures and potent biological activities. Elucidating the target molecule and the mechanism of action is an essential and challenging step in drug development starting with a natural product. Odoamide, a member of aurilide-family isolated from Okinawan marine cyanobacterium, has been known to exhibit highly potent cytotoxicity against various cancer cell lines.

View Article and Find Full Text PDF

The protein interactome of p65/RELA, the most active subunit of the transcription factor (TF) NF-κB, has not been previously determined in living cells. Using p65-miniTurbo fusion proteins and biotin tagging, we identify >350 RELA interactors from untreated and IL-1α-stimulated cells, including many TFs (47% of all interactors) and >50 epigenetic regulators belonging to different classes of chromatin remodeling complexes. A comparison with the interactomes of two point mutants of p65 reveals that the interactions primarily require intact dimerization rather than DNA-binding properties.

View Article and Find Full Text PDF

Ubiquitination of OsCSN5 by OsPUB45 activates immunity by modulating the OsCUL3a-OsNPR1 module.

Sci Adv

January 2025

State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China.

The COP9 signalosome (CSN) is a highly conserved protein complex in eukaryotes, with CSN5 serving as its critical catalytic subunit. However, the role of CSN5 in plant immunity is largely unexplored. Here, we found that suppression of in rice enhances resistance against the fungal pathogen and the bacterial pathogen pv.

View Article and Find Full Text PDF

Six strains (DMKU-SG26, DMKU-SG42, DMKU-SYM22, DMKU-RG41, DMKU-RX317 and DMKU-RGM25) representing a novel basidiomycetous yeast species were isolated from leaf surfaces of mangrove plants collected in Thailand. Pairwise sequence analysis indicated that the six strains either had identical nucleotide substitution in the D1/D2 domains of the large subunit (LSU) rRNA gene sequences or differed by one to three nucleotide(s). They also had identical or differed by one to five nucleotide substitution(s) in the internal transcribed spacer (ITS) regions.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!