Reversible addition-fragmentation chain transfer polymerization was employed to synthesize a set of copolymers of styrene (PS) and 2,3,4,5,6-pentafluorostyrene (PPFS), as well as block copolymers with tert-butyl acrylate (PtBA)-b-PS-co-PPFS, with control over molecular weight and polydispersity. It was found that the copolymerization of styrene and PFS allowed for the preparation of gradient copolymers with opposite levels of monomer consumption, depending on the feed ratio. Conversion to amphiphilic block copolymers, PAA-b-(PS-co-PPFS), by removing the protecting groups was followed by fitting with monomethoxy poly(ethylene glycol) chains. Solution-state assembly and intramicellar crosslinking afforded shell crosslinked (SCK) block copolymer nanoparticles. These fluorinated nanoparticles (ca. 20 nm diameters) were studied as potential magnetic resonance imaging (MRI) contrast agents based on the (19)F-nuclei, however, it was found that packaging of the hydrophobic fluorinated polymers into the core domain restricted the mobility of the chains and prohibited (19)F-NMR spectroscopy when the particles were dispersed in water without an organic cosolvent. Packing of perflouro-15-crown-5-ether (PFCE) into the polymer micelle was demonstrated with good uptake efficiency, however, it was necessary to swell the core with a good solvent (DMSO) to increase the mobility and observe the (19)F-NMR signal of the PFCE.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2779516 | PMC |
http://dx.doi.org/10.1002/pola.23184 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!