Although it is established that Alzheimer's disease (AD) leads to cerebral macrostructural atrophy, microstructural diffusion changes have also been observed, but it is not yet known whether these changes offer unique information about the disease pathology. Thus, a multi-modal imaging study was conducted to determine the independent contribution of each modality in moderate to severe AD. Seventeen patients with moderate-severe AD and 13 healthy volunteers underwent diffusion-weighted and T1-weighted MR scanning. Images were processed to obtain measures of macrostructural atrophy (gray and white matter volumes) and microstructural damage (fractional anisotropy and mean diffusivity). Microstructural diffusion changes independent of macrostructural loss were investigated using an ANCOVA where macrostructural maps were used as voxel-wise covariates. The reverse ANCOVA model was also assessed, where macrostructural loss was the dependent variable and microstructural diffusion tensor imaging maps were the imaging covariates. Diffusion differences between patients and controls were observed after controlling for volumetric differences in medial temporal, retrosplenial regions, anterior commissure, corona radiata, internal capsule, thalamus, corticopontine tracts, cerebral peduncle, striatum, and precentral gyrus. Independent volumetric differences were observed in the entorhinal cortex, inferior temporal lobe, posterior cingulate cortex, splenium and cerebellum. While it is well known that AD is associated with pronounced volumetric change, this study suggests that measures of microstructure provide unique information not obtainable with volumetric mapping in regions known to be pivotal in AD and in those thought to be spared. As such this work provides great understanding of the topography of pathological changes in AD that can be captured with imaging.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2889147 | PMC |
http://dx.doi.org/10.3233/JAD-2010-1295 | DOI Listing |
PLoS One
January 2025
The Key Laboratory of Cyber-Physical Power System of Yunnan Universities, Yunnan Minzu University, Kunming, Yunnan Province, China.
Current researches on sodium penetration in electrolytic aluminum cathode carbon blocks primarily measure cathode expansion curves, showing mostly macroscopic characteristics. However, the microscopic structure is often underexplored. As a porous medium, the diffusion performance of cathode carbon blocks is closely tied to their internal pore structure.
View Article and Find Full Text PDFRadiologie (Heidelb)
January 2025
Department of Radiology, Bezmialem Vakıf University, Istanbul, Turkey.
Purpose: To determine whether there is a difference in apparent diffusion coefficient (ADC) and fractional anisotropy (FA) values in white matter pathways in the subacute period after COVID-19 infection and to evaluate the correlation between diffusion tensor imaging (DTI) metrics and laboratory findings.
Material And Methods: The study included 64 healthy controls and 91 patients. Patients were classified as group 1 (all patients, n = 91), group 2 (outpatients, n = 58), or group 3 (inpatients, n = 33).
Brain
January 2025
Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02129, USA.
Although the pathophysiology of migraine involves a complex ensemble of peripheral and central nervous system changes that remain incompletely understood, the activation and sensitization of the trigeminovascular system is believed to play a major role. However, non-invasive, in vivo neuroimaging studies investigating the underlying neural mechanisms of trigeminal system abnormalities in human migraine patients are limited. Here, we studied 60 patients with migraine (55 females, mean age ± SD: 36.
View Article and Find Full Text PDFBrain Commun
May 2024
Department of Neurology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany.
Cortical thickness analyses have provided valuable insights into changes in cortical brain structure after stroke and their association with recovery. Across studies though, relationships between cortical structure and function show inconsistent results. Recent developments in diffusion-weighted imaging of the cortex have paved the way to uncover hidden aspects of stroke-related alterations in cortical microstructure, going beyond cortical thickness as a surrogate for cortical macrostructure.
View Article and Find Full Text PDFWeld World
November 2024
Solid State Materials Processing, Institute of Material and Process Design, Helmholtz-Zentrum Hereon, Geesthacht, Germany.
Friction surfacing (FS) is a solid-state deposition process in which layers are deposited on a substrate surface by frictional heat and severe plastic deformation of a consumable stud material below its melting temperature. Bonding occurs due to accelerated diffusion. The deposition of several layers on top of each other is referred to as multi-layer FS (MLFS), a promising candidate for additive manufacturing (AM) as it offers advantages over fusion-based AM.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!