Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Photovoltaic devices based on single-walled carbon nanotubes (SWNTs) and n-silicon heterojunctions have been fabricated by a spray deposition process. We provide direct evidence that nanotubes serve as an active photosensing material involved directly in the photon absorption process as well as contributing to charge separation, transport and collection. The characteristic band of the SWNT band in the photoconductivity spectrum matches the S(11) absorption band of semiconducting SWNTs of 7,6 chirality. Centrifugation of the SWNTs provides two fractions. The sediment fraction exhibits a conversion efficiency ( approximately 1.7%) higher by a factor of eight compared to the supernatant fraction. SEM images and conductivity measurements show that the SWNT network morphology of the sediment fraction has longer and thicker nanotube bundles forming highly porous films, accounting for the enhanced conductivity and higher transparency.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1088/0957-4484/21/10/105203 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!