Transferrin (Tf)-conjugated lipid-coated poly(d,l-lactide-co-glycolide) (PLGA) nanoparticles carrying the aromatase inhibitor, 7alpha-(4'-amino)phenylthio-1,4-androstadiene-3,17-dione (7alpha-APTADD), were synthesized by a solvent injection method. Formulation parameters including PLGA-to-lipid, egg PC-to-TPGS, and drug-to-PLGA ratios and aqueous-to-organic phase ratio at the point of synthesis were optimized to obtain nanoparticles with desired sizes and drug loading efficiency. The optimal formulation had a drug loading efficiency of 36.3+/-3.4%, mean diameter of 170.3+/-7.6nm and zeta potential of -18.9+/-1.5mV. The aromatase inhibition activity of the nanoparticles was evaluated in SKBR-3 breast cancer cells. IC(50) value of the Tf-nanoparticles was ranging from 0.77 to 1.21nM, and IC(50) value of the nanoparticles was ranging from 1.90 to 3.41nM (n=3). The former is significantly lower than the latter (p<0.05). These results suggested that the aromatase inhibition activity of the Tf-nanoparticles was enhanced relative to that of the non-targeted nanoparticles, which was attributable to Tf receptor (TfR) mediated uptake. In conclusion, Tf-conjugated lipid-coated PLGA nanoparticles are potential vehicles for improving the efficiency and specificity of therapeutic delivery of aromatase inhibitors.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3807850PMC
http://dx.doi.org/10.1016/j.ijpharm.2010.02.008DOI Listing

Publication Analysis

Top Keywords

plga nanoparticles
8
aromatase inhibitor
8
breast cancer
8
cancer cells
8
drug loading
8
loading efficiency
8
nanoparticles
5
transferrin-conjugated lipid-coated
4
lipid-coated plga
4
nanoparticles targeted
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!