A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Biological relevance of natural alpha-toxin fragments from Staphylococcus aureus. | LitMetric

Serine proteases represent an essential part of cellular homeostasis by generating biologically active peptides. In bacteria, proteolysis serves two different roles: a major housekeeping function and the destruction of foreign or target cell proteins, thereby promoting bacterial invasion. In the process, other virulence factors such as exotoxins become affected. In Staphylococcus aureus culture supernatant, the pore-forming alpha-toxin is cleaved by the coexpressed V8 protease and aureolysin. The oligomerizing and pore-forming abilities of five such spontaneously occurring N- and C-terminal alpha-toxin fragments were studied. (3)H-marked alpha-toxin fragments bound to rabbit erythrocyte membranes but only fragments with intact C termini, missing 8, 12 and 71 amino acids from their N-terminal, formed stable oligomers. All isolated fragments induced intoxication of mouse adrenocortical Y1 cells in vitro, though the nature of membrane damage for a fragment, degraded at its C terminus, remained obscure. Only one fragment, missing the first eight N-terminal amino acids, induced irreversible intoxication of Y1 cells in the same manner as the intact toxin. Four of the isolated fragments caused swelling, indicating altered channel formation. Fragments missing 12 and 71 amino acids from the N terminus occupied the same binding sites on Y1 cell membranes, though they inhibited membrane damage caused by intact toxin. In conclusion, N-terminal deletions up to 71 amino acids are tolerated, though the kinetics of channel formation and the channel's properties are altered. In contrast, digestion at the C terminus results in nonfunctional species.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00232-010-9229-6DOI Listing

Publication Analysis

Top Keywords

amino acids
16
alpha-toxin fragments
12
staphylococcus aureus
8
missing amino
8
isolated fragments
8
membrane damage
8
intact toxin
8
channel formation
8
fragments
7
biological relevance
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!