In this paper, we report the effect of Scots pine genotypes on ectomycorrhizal (ECM) community and growth, survival, and foliar nutrient composition of 2-year-old seedlings grown in forest bare-root nursery conditions in Lithuania. The Scots pine seeds originated from five stands from Latvia (P1), Lithuania (P2 and P3), Belarus (P4), and Poland (P5). Based on molecular identification, seven ECM fungal taxa were identified: Suillus luteus and Suillus variegatus (within the Suilloid type), Wilcoxina mikolae, Tuber sp., Thelephora terrestris, Cenococcum geophilum, and Russuloid type. The fungal species richness varied between five and seven morphotypes, depending on seed origin. The average species richness and relative abundance of most ECM morphotypes differed significantly depending on pine origin. The most essential finding of our study is the shift in dominance from an ascomycetous fungus like W. mikolae in P2 and P4 seedlings to basidiomycetous Suilloid species like S. luteus and S. variegatus in P1 and P5 seedlings. Significant differences between Scots pine origin were also found in seedling height, root dry weight, survival, and concentration of C, K, Ca, and Mg in the needles. The Spearman rank correlation coefficient revealed that survival and nutritional status of pine seedlings were positively correlated with abundance of Suilloid mycorrhizas and negatively linked with W. mikolae abundance. However, stepwise multiple regression analysis showed that only survival and magnesium content in pine needles were significantly correlated with abundance of ECM fungi, and Suilloid mycorrhizas were a main significant predictor. Our results may have implications for understanding the physiological and genetic relationship between the host tree and fungi and should be considered in management decisions in forestry and ECM fungus inoculation programs.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s00572-010-0298-2 | DOI Listing |
Appl Environ Microbiol
January 2025
Department of Forest Mycology and Plant Pathology, Uppsala BioCenter, Swedish University of Agricultural Sciences, Uppsala, Sweden.
In Sweden, reforestation of managed forests relies predominantly on planting nursery-produced tree seedlings. However, the intense production using containerized cultivation systems (e.g.
View Article and Find Full Text PDFPlant Biol (Stuttg)
January 2025
Centre de Recerca Ecològica i Aplicacions Forestals (CREAF), Campus de Bellaterra (UAB) Edifici C, Cerdanyola del Vallès, Spain.
Tree responses to drought are well studied, but the interacting effects of drought timing on growth, water use, and stress legacy are less understood. We investigated how a widespread conifer, Scots pine, responded to hot droughts early or late in the growing season, or to both. We measured sap flux, stem growth, needle elongation, and leaf water potential (Ψ) to assess the impacts of stress timing on drought resilience in Scots pine saplings.
View Article and Find Full Text PDFEnviron Sci Pollut Res Int
January 2025
Slovak Hydrometeorological Institute, Jeséniova 17, Bratislava, 833 15, Slovakia.
This study focused on testing the response of the assimilation apparatus of evergreen Pinaceae species to increasing levels of oxidative stress simulated in manipulative experiments. Needles were collected from mature individuals of Pinus mugo, Pinus cembra, Pinus sylvestris, Abies alba, and Picea abies at the foothill (FH) and alpine treeline ecotone (ATE) in the High Tatras (Western Carpathians). The injury index (INX), quantified by the modified electrolyte leakage (EL) method, indicated severe needle damage due to exposure to extremely high levels of O.
View Article and Find Full Text PDFPlants (Basel)
December 2024
Institute of Forestry, Lithuanian Research Centre for Agriculture and Forestry, Liepų 1, Girionys, LT-53101 Kaunas, Lithuania.
Trees growing in urban areas face increasing stress from atmospheric pollutants, with limited attention given to the early responses of young seedlings. This study aimed to address the knowledge gap regarding the effects of simulated pollutant exposure, specifically particulate matter (PM), elevated ozone (O), and carbon dioxide (CO) concentrations, on young seedlings of five tree species: Scots pine ( L.); Norway spruce ( (L.
View Article and Find Full Text PDFMolecules
December 2024
Department of Physical Chemistry, Faculty of Chemistry, University of Łódź, Pomorska 163/165, 90-236 Łódź, Poland.
Extracts from natural waste like bark or leaves are great sources of phytochemicals, which contain functional groups (hydroxyl, carboxylic, vinyl, allyl) attractive in terms of polymer synthesis. In this study, the synthesis of epoxy with an extract of Scots pine bark as a natural co-hardener was evaluated. Ultraviolet-visible (UV-Vis) spectroscopy was used for the identification of phytochemicals with conjugated dienes and quantification of TPC.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!