We studied C stable isotopic composition (delta(13)C) of bulk leaf tissue and extracted sugars of four epiphytic Tillandsia species to investigate flexibility in the use of crassulacean acid metabolism (CAM) and C(3) photosynthetic pathways. Plants growing in two seasonally dry tropical forest reserves in Mexico that differ in annual precipitation were measured during wet and dry seasons, and among secondary, mature, and wetland forest types within each site. Dry season sugars were more enriched in (13)C than wet season sugars, but there was no seasonal difference in bulk tissues. Bulk tissue delta(13)C differed by species and by forest type, with values from open-canopied wetlands more enriched in (13)C than mature or secondary forest types. The shifts within forest habitat were related to temporal and spatial changes in vapor pressure deficits (VPD). Modeling results estimate a possible 4% increase in the proportional contribution of the C(3) pathway during the wet season, emphasizing that any seasonal or habitat-mediated variation in photosynthetic pathway appears to be quite moderate and within the range of isotopic effects caused by variation in stomatal conductance during assimilation through the C(3) pathway and environmental variation in VPD. C isotopic analysis of sugars together with bulk leaf tissue offers a useful approach for incorporating short- and long-term measurements of C isotope discrimination during photosynthesis.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2886131PMC
http://dx.doi.org/10.1007/s00442-010-1577-5DOI Listing

Publication Analysis

Top Keywords

stable isotopic
8
isotopic composition
8
bulk leaf
8
leaf tissue
8
forest types
8
season sugars
8
enriched 13c
8
wet season
8
sugars
5
forest
5

Similar Publications

Protein glycation compromises the bioavailability of milk protein-derived lysine in vivo in healthy adult males: a double-blind randomized cross-over trial.

Am J Clin Nutr

January 2025

Department of Human Biology, NUTRIM Institute of Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre+, Maastricht, the Netherlands. Electronic address:

Background: Industrial processing and storage of milk products can strongly increase protein glycation level. Previously, we have reported that ingestion of highly glycated milk protein attenuates the post-prandial rise in plasma lysine concentrations when compared to the ingestion of an equivalent amount of milk protein with a low glycation level. Whether the attenuated increase in plasma lysine availability is attributed to compromised protein digestion and subsequent lysine absorption remains to be established.

View Article and Find Full Text PDF

Nitrate (NO) pollution in groundwater is a worldwide environmental issue, particularly in developed planting-breeding areas where there is a substantial presence of nitrogen-related sources. Here, we explored the key sources and potential health risks of NO in a typical planting-breeding area in the North China Plain based on dual stable isotopes and Monte Carlo simulations. The analysis results revealed that the NO concentration ranged from 0.

View Article and Find Full Text PDF

Although sulfur-bearing minerals are valuable resources, they pose significant environmental risks to river ecosystems by releasing hazardous leachate. Accurately tracing these sources is crucial but challenging due to overlapping chemical signatures and pollutant transport dynamics in river systems. This study investigates seasonal and spatial variations in sulfate (SO) and trace element contributions in mining districts of the upper Nakdong River basin, South Korea.

View Article and Find Full Text PDF

Background: Hemodialysis may excessively remove valuable solutes. Untargeted metabolomics data from a prior study suggested that ergothioneine was depleted in the plasma of hemodialysis subjects. Ergothioneine is a dietary-derived solute with antioxidant properties.

View Article and Find Full Text PDF

Compound-specific stable isotope analysis (CSIA) using liquid chromatography-isotope ratio mass spectrometry (LC-IRMS) is a powerful tool for determining the isotopic composition of carbon in analytes from complex mixtures. However, LC-IRMS methods are constrained to fully aqueous eluents. Previous efforts to overcome this limitation were unsuccessful, as the use of organic eluents in LC-IRMS was deemed impossible.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!