Si wire arrays are a promising architecture for solar-energy-harvesting applications, and may offer a mechanically flexible alternative to Si wafers for photovoltaics. To achieve competitive conversion efficiencies, the wires must absorb sunlight over a broad range of wavelengths and incidence angles, despite occupying only a modest fraction of the array's volume. Here, we show that arrays having less than 5% areal fraction of wires can achieve up to 96% peak absorption, and that they can absorb up to 85% of day-integrated, above-bandgap direct sunlight. In fact, these arrays show enhanced near-infrared absorption, which allows their overall sunlight absorption to exceed the ray-optics light-trapping absorption limit for an equivalent volume of randomly textured planar Si, over a broad range of incidence angles. We furthermore demonstrate that the light absorbed by Si wire arrays can be collected with a peak external quantum efficiency of 0.89, and that they show broadband, near-unity internal quantum efficiency for carrier collection through a radial semiconductor/liquid junction at the surface of each wire. The observed absorption enhancement and collection efficiency enable a cell geometry that not only uses 1/100th the material of traditional wafer-based devices, but also may offer increased photovoltaic efficiency owing to an effective optical concentration of up to 20 times.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1038/nmat2635 | DOI Listing |
Phys Rev Lett
December 2024
Department of Physics, Stanford University, Stanford, California 94305, USA.
Inspired by the observation of increasingly one-dimensional (1D) behavior with decreasing temperature in small-angle twisted bilayers of WTe_{2} (tWTe_{2}), we theoretically explore the exotic sliding regimes that could be realized in tWTe_{2}. At zero displacement field, while hole-doped tWTe_{2} can be thought of as an array of weakly coupled conventional two-flavor 1D electron gases (1DEGs), the electron-doped regime is equivalent to coupled four-flavor 1DEGs, due to the presence of an additional "valley" degree of freedom. In the decoupled limit, the electron-doped system can thus realize phases with a range of interesting ordering tendencies, including 4k_{F} charge-density-wave and charge-4e superconductivity.
View Article and Find Full Text PDFUnfallchirurgie (Heidelb)
January 2025
Klinik für Unfallchirurgie, Technische Universität München, Klinikum rechts der Isar, Ismaninger Straße 22, 81675, München, Deutschland.
Objective Of Surgery: The aim of this surgery is to safeguard the multifragmentary and nondisplaced talus fracture (body and neck) against secondary dislocation in a navigated and minimally invasive manner using screw osteosynthesis.
Indications: Due to the young age of the patient in the presented case and the risk of a possible secondary dislocation, the decision was made in favor of surgical treatment.
Contraindications: Soft tissue swelling, wound infections and allergies to the osteosynthesis material.
Heliyon
July 2024
Sir Peter Mansfield Imaging Centre, School of Physics and Astronomy, University of Nottingham, Nottingham, NG7 2RD, UK.
Prospective motion corrections in brain imaging for MRI are fairly challenging. Monitoring involuntary head movement inside MR scanner is crucial for prospective motion correction. This initial study delves into utilizing simulations to track the head's movements within an MRI scanner, achieved by measuring induced voltage changes from time-varying magnetic field gradients in head-mounted coils.
View Article and Find Full Text PDFACS Appl Mater Interfaces
December 2024
College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin 150040, China.
Photoelectrochemical photodetectors (PEC PDs) are promising in underwater optoelectronic devices because of their low cost, good sensitivity, and self-powered characteristics. However, achieving high-performance omnidirectional visible PEC PDs using seawater as the electrolyte is still challenging, hindering their practical application. This work successfully synthesized CuO nanobelt arrays (NAs) on a linear copper wire via a low-temperature solution method with an annealing process.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!