A well defined diblock copolymer (P3HT-b-C(60)) based on regioregular poly(3-hexylthiophene) (P3HT) and [6,6]-phenyl-C61-butyric acid methyl ester (PCBM) was synthesized via two controlled polymerization steps and used as a compatibilizer for the P3HT/PCBM blend, which has widely been used as an active layer in bulk heterojunction polymer solar cells. The addition of a small amount of P3HT-b-C(60) results in not only the reduction of phase size of P3HT/PCBM blend but also the suppression of macrophase separation for long-time thermal annealing owing to the preferential location of the diblock copolymers at the interface between P3HT and PCBM phases. The morphology change with the annealing time is closely related to the change of the power conversion efficiency (PCE) of solar cells: the PCE of P3HT/PCBM greatly decreases with increasing annealing time while the addition of P3HT-b-C(60) significantly reduces the decrease of PCE for long-time thermal annealing.

Download full-text PDF

Source
http://dx.doi.org/10.1088/0957-4484/21/10/105201DOI Listing

Publication Analysis

Top Keywords

bulk heterojunction
8
diblock copolymer
8
p3ht/pcbm blend
8
solar cells
8
long-time thermal
8
thermal annealing
8
annealing time
8
morphology control
4
control polythiophene-fullerene
4
polythiophene-fullerene bulk
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!