pH-induced fabrication of DNA/chitosan/alpha-ZrP nanocomposite and DNA release.

Nanotechnology

State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, People's Republic of China.

Published: March 2010

With positively charged chitosan as an intermediary, herring sperm DNA was intercalated into the interlayer galleries of negatively charged alpha-ZrP to form DNA/chitosan/alpha-ZrP ternary hybrids at pH 5.5. Fourier-transform IR, x-ray diffraction and scanning electron microscopy confirmed not only the coexistence of DNA, chitosan and alpha-ZrP in the composite but also the layered composite structure with an interlayer distance of 4.25 nm. Circular dichroism (CD) and UV spectroscopic studies disclosed that the restraint of DNA by the layered alpha-ZrP favors stabilization of the double-helical conformation of DNA and enhances the denaturation temperature. The intercalated DNA can be effectively released from the ternary nanocomposites at pHs higher than 6.5, and the released DNA displayed a similar CD spectrum to that of free DNA. The current research displays the promising potential to obtain a non-viral gene vector by intercalating DNA into negatively charged inorganic layered materials in the presence of a positively charged intermediary.

Download full-text PDF

Source
http://dx.doi.org/10.1088/0957-4484/21/10/105102DOI Listing

Publication Analysis

Top Keywords

dna
9
positively charged
8
negatively charged
8
ph-induced fabrication
4
fabrication dna/chitosan/alpha-zrp
4
dna/chitosan/alpha-zrp nanocomposite
4
nanocomposite dna
4
dna release
4
release positively
4
charged
4

Similar Publications

Introduction: Spondyloepimetaphyseal dysplasia with joint laxity type 1 (SEMD-JL1) is an extremely rare skeletal dysplasia belonging to a group of disorders called linkeropathies. It is characterized by skeletal and connective tissue abnormalities. Biallelic variants in genes encoding enzymes that synthesize the tetrasaccharide linker region of glycosaminoglycans lead to linkeropathies, which exhibit clinical and phenotypic features that overlap with each other.

View Article and Find Full Text PDF

Efficient and Rapid Enrichment of Extracellular Vesicles Using DNA Nanotechnology-Enabled Synthetic Nano-Glue.

Anal Chem

January 2025

The Key Laboratory of Zhejiang Province for Aptamers and Theranostics, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou 310022, China.

Swift and efficient enrichment and isolation of extracellular vesicles (EVs) are crucial for enhancing precise disease diagnostics and therapeutic strategies, as well as elucidating the complex biological roles of EVs. Conventional methods of isolating EVs are often marred by lengthy and laborious processes. In this study, we introduce an innovative approach to enrich and isolate EVs by leveraging the capabilities of DNA nanotechnology.

View Article and Find Full Text PDF

The folding of the guanine repetitive region in the telomere unit into G-quadruplex (G4) by drugs has been suggested as an alternative approach for cancer therapy. Hydroxychloroquine (HCQ) and chloroquine (CQ) are two important drugs in the trial stage for cancer. Both drugs can induce the folding of telomere-guanine-rich sequences into G4 even in the absence of salt.

View Article and Find Full Text PDF

Recent advances in genome editing tools and CRISPR-Cas technologies have enabled plant genome engineering reach new heights. The current regulatory exemptions for certain categories of genome edited products, such as those derived from SDN-1 and SDN-2, which are free of any transgene, have significantly accelerated genome editing research in a number of agricultural crop plants in different countries. Although CRISPR-Cas technology is becoming increasingly popular, it is still important to carefully consider a number of factors before planning and carrying conducting CRISPR-Cas studies.

View Article and Find Full Text PDF

Background And Aims: Mounting evidence have implicated that rs1801131 and rs1801133, located in the Methylenetetrahydrofolate reductase (MTHFR) gene, may emerge as novel biomarkers for coronary artery disease (CAD). The Synergy between Percutaneous Coronary Intervention with Taxus and Cardiac Surgery (SYNTAX) score is also an appropriate predictor for revascularization strategy in patients with complex CAD. The aim of this study is to investigate the correlation between rs1801131 and rs1801133 with the severity of coronary lesions in patients with ST‑Elevation Myocardial Infarction (STEMI) and Non‑ST‑Elevation Myocardial Infarction (NSTEMI) based on the SYNTAX score.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!