Mutations in spastin are the most frequent cause of the neurodegenerative disease autosomal dominant-hereditary spastic paraplegia (AD-HSP). Drosophila melanogaster lacking spastin exhibit striking behavioral similarities to human patients suffering from AD-HSP, suggesting conservation of Spastin function between the species. Consistent with this, we show that exogenous expression of wild-type Drosophila or human spastin rescues behavioral and cellular defects in spastin null flies equivalently. This enabled us to generate genetically representative models of AD-HSP, which arises from dominant mutations in spastin rather than a complete loss of the gene. Flies co-expressing one copy of wild-type human spastin and one encoding the K388R catalytic domain mutation in the fly spastin null background, exhibit aberrant distal synapse morphology and microtubule distribution, similar to but less severe than spastin nulls. R388 or a separate nonsense mutation act dominantly and are furthermore sufficient to confer partial rescue, supporting in vitro evidence for additional, non-catalytic Spastin functions. Using this model, we tested the observation from human pedigrees that S44L and P45Q are trans-acting modifiers of mutations affecting the Spastin catalytic domain. As in humans, both L44 and Q45 are largely silent when heterozygous, but exacerbate mutant phenotypes when expressed in trans with R388. These transgenic 'AD-HSP' flies therefore provide a powerful and tractable model to enhance our understanding of the cellular and behavioral consequences of human spastin mutations and test hypotheses directly relevant to the human disease.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2860889 | PMC |
http://dx.doi.org/10.1093/hmg/ddq064 | DOI Listing |
Eur J Neurol
January 2025
Service de Génétique Médicale, CHU Bordeaux, Bordeaux, France.
Purpose: Heterozygous pathogenic variants in SPAST are known to cause Hereditary Spastic Paraplegia 4 (SPG4), the most common form of HSP, characterized by progressive bilateral lower limbs spasticity with frequent sphincter disorders. However, there are very few descriptions in the literature of patients carrying biallelic variants in SPAST.
Methods: Targeted Sanger sequencing, panel sequencing and exome sequencing were used to identify the genetic causes in 9 patients from 6 unrelated families with symptoms of HSP or infantile neurodegenerative disorder.
Biochim Biophys Acta Mol Cell Res
February 2025
Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu 226001, China. Electronic address:
Microtubule-severing enzymes such as spastin, katanin, and fidgetin, characterized by their AAA ATPase domains, are pivotal in modulating microtubule dynamics and behavior across various cellular processes. While spastin and katanin are recognized for their predominant and robust severing of stable microtubules, thereby enhancing microtubule turnover, fidgetin exhibits comparatively weaker severing activity and selectively targets labile microtubules. The interplay among these enzymes and their mutual regulatory mechanisms remains inadequately understood.
View Article and Find Full Text PDFNan Fang Yi Ke Da Xue Xue Bao
November 2024
Department of Reproductive Medicine, Jinling Clinical Medical College, Nanjing University of Chinese Medicine, Nanjng 210002, China.
J Transl Med
September 2024
Department of Neurology, Peking Union Medical College, Peking Union Medical College Hospital, Chinese Academy of Medical Science, Beijing, 100730, China.
J Biol Chem
November 2024
Department of Molecular and Cellular Biology, University of California, Davis, California, USA. Electronic address:
Microtubule-associated protein, MAP1B, is crucial for neuronal morphogenesis and disruptions in MAP1B function are correlated with neurodevelopmental disorders. MAP1B encodes a single polypeptide that is processed into discrete proteins, a heavy chain (HC) and a light chain (LC); however, it is unclear if these two chains operate individually or as a complex within the cell. In vivo studies have characterized the contribution of MAP1B HC and LC to microtubule and actin-based processes, but their molecular mechanisms of action are unknown.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!