The abnormally folded form of the prion protein (PrP(Sc)) accumulating in nervous and lymphoid tissues of prion-infected individuals can be naturally cleaved to generate a N-terminal-truncated fragment called C2. Information about the identity of the cellular proteases involved in this process and its possible role in prion biology has remained limited and controversial. We investigated PrP(Sc) N-terminal trimming in different cell lines and primary cultured nerve cells, and in the brain and spleen tissue from transgenic mice infected by ovine and mouse prions. We found the following: (i) the full-length to C2 ratio varies considerably depending on the infected cell or tissue. Thus, in primary neurons and brain tissue, PrP(Sc) accumulated predominantly as untrimmed species, whereas efficient trimming occurred in Rov and MovS cells, and in spleen tissue. (ii) Although C2 is generally considered to be the counterpart of the PrP(Sc) proteinase K-resistant core, the N termini of the fragments cleaved in vivo and in vitro can actually differ, as evidenced by a different reactivity toward the Pc248 anti-octarepeat antibody. (iii) In lysosome-impaired cells, the ratio of full-length versus C2 species dramatically increased, yet efficient prion propagation could occur. Moreover, cathepsin but not calpain inhibitors markedly inhibited C2 formation, and in vitro cleavage by cathepsins B and L produced PrP(Sc) fragments lacking the Pc248 epitope, strongly arguing for the primary involvement of acidic hydrolases of the endolysosomal compartment. These findings have implications on the molecular analysis of PrP(Sc) and cell pathogenesis of prion infection.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2856230 | PMC |
http://dx.doi.org/10.1074/jbc.M109.083857 | DOI Listing |
Alzheimers Dement
December 2024
Colorado State University, Fort Collins, CO, USA.
Background: In tauopathies, the protein tau misfolds into a b-sheet conformation that self-templates and spreads throughout the brain causing progressive degeneration. Biological and structural data have shown that the shape, or strain, that tau adopts when it misfolds determines which disease a patient will develop. We previously used HEK293T cells expressing TauRD-YFP to show that tau strain formation is isoform-specific.
View Article and Find Full Text PDFAlzheimers Dement
December 2024
Peking University, Beijing, Beijing, China.
Background: Prion diseases are a group of neurodegenerative diseases associated with prion protein. The disease can be caused by mutations in the PRNP gene, the gene that encodes prion protein. An octapeptide repeat on the N-terminus of prion protein plays an important role in normal intercellular function of prion protein.
View Article and Find Full Text PDFAlzheimers Dement
December 2024
Ecole polytechnique - CNRS UMR7654, Palaiseau, Ile-de-France, France; Université Paris Cité - Inserm UMR-S1124, Paris, Ile-de-France, France.
Alzheimer's disease (AD) is the most common dementia in humans that today concerns 50 million individuals worldwide and will affect more than 100 million people in 2050. Except for familial AD cases (<5% of AD patients) for which AD pathology connects to mutations in critical genes involved in the processing of the amyloid precursor protein into neurotoxic Aß peptides, it remains unknown what provokes the overproduction and deposition of Aß peptides in the brain of sporadic AD cases (>95% of AD patients). Some nanosized materials, e.
View Article and Find Full Text PDFAlzheimers Dement
December 2024
University of Texas Medical Branch, Galveston, TX, USA.
Background: Tauopathies, including Alzheimer's Disease and Frontotemporal Dementia, are characterized as intracellular lesions composed of aggregated tau proteins. Soluble tau oligomers are shown to be one of the most toxic species and are responsible for the spread of tau pathology. Recent studies have found that several proteins such as amyloid b, a-synuclein, and TDP-43 can aggregate tau.
View Article and Find Full Text PDFAlzheimers Dement
December 2024
University of Malaga/CIBERNED/IBIMA, Málaga, Spain.
Background: Alzheimer's Disease (AD) is a neurodegenerative proteinopathy in which Aβ can misfold and aggregate into seeds that structurally corrupt native proteins, mimicking a prion-like process. These amyloid aggregation and propagation processes are influenced by three factors: the origin of the Aβ seed, time of incubation and host. However, the mechanism underlying the differential effect of each factor is poorly known.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!