The aim of this study was to determine the current intensities necessary to elicit three levels of varying EEG and behavioural phenomena with electrical stimulation, and also to determine the consistency of the EEG and behavioural components of the triggered seizures over time. Electrical stimulation of the primary motor/somatosensory cortex was performed in 16 adult rats with multichannel microwire electrode arrays. Stimulation was delivered at a frequency of 60 Hz (1 ms pulse width), for 2 s duration, as biphasic rectangular pulses over four of the eight available electrode pairs. Current intensity thresholds for interruption of normal behaviour, epileptiform afterdischarge (EAD) longer than 5 s and motor seizures with Racine severity greater than 3 were not correlated to time post-surgery. The Racine threshold was shown to be negatively correlated to the EAD duration and Racine severity of seizures elicited in the following sessions. Seizures were reliably generated in rats through cortical stimulation with microwire electrode arrays and these seizures were not shown to be subject to any kindling type effects up to 53 days post-implantation. Both the electrographic duration and behavioural severity of stimulated seizures remained, on average, constant during this experimental period. Approximately one-third of stimulations did not cause observable motor seizures and of those that did result in seizures, forelimb clonus was the most common manifestation and the mean EAD duration was 18.5 s. No damage beyond that caused by surgical implantation of electrodes was observed in the histological analyses of stimulated and non-stimulated tissue. The consistency, duration and severity of seizures within this timeframe make this cortical stimulation model suitable for investigations into novel therapeutic interventions for epilepsy that require a known seizure focus.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.eplepsyres.2010.01.010 | DOI Listing |
J Orthop Sci
January 2025
Cell Therapy and Experimental Surgery of Musculoskeletal System LR18SP11 Lab, Faculty of Medicine, Sfax, Tunisia; Department of Orthopedics and Traumatology, CHU Habib Bourguiba, Sfax, Tunisia.
Objective: This study aimed to assess the effect of implantation of fresh human amniotic membranes (HAM) on bone consolidation during distraction bone lengthening.
Methods: Ten New Zealand white rabbits were used in this study. For each rabbit, we performed a diaphyseal tibial osteotomy after installing a single-plane distraction external fixator.
Curr Biol
December 2024
Department of Pharmacology, Vanderbilt Brain Institute, Vanderbilt Center for Addiction Research, Vanderbilt University, Nashville, TN 37232, USA; Department of Anatomy, Cell Biology, & Physiology, Indiana University School of Medicine, Indianapolis, IN 46202, USA. Electronic address:
Human and non-human primate studies clearly implicate the dorsolateral prefrontal cortex (dlPFC) as critical for advanced cognitive functions. It is thought that intracortical synaptic architectures within the dlPFC are the integral neurobiological substrate that gives rise to these processes. In the prevailing model, each cortical column makes up one fundamental processing unit composed of dense intrinsic connectivity, conceptualized as the "canonical" cortical microcircuit.
View Article and Find Full Text PDFNeuropeptides
January 2025
Affiliated Rehabilitation Hospital, Jiang Xi Medical College, Nanchang University, Nanchang 330003, Jiangxi, China; Rehabilitation Medicine Clinical Research Center of Jiangxi Province, 330003, Jiangxi, China; Key Laboratory of Jiangxi Provincial Health Commission for DOC Rehabilitation, 330003, Jiangxi, China. Electronic address:
Traumatic brain injury (TBI) is a life-threatening condition with high incidence and mortality rates. The current pharmacological interventions for TBI exhibit limited efficacy, underscoring the necessity to explore novel and effective therapeutic approaches to ameliorate its impact. Previous studies have indicated that transcranial pulsed current stimulation (tPCS) can improve neurofunctional deficits in patients by modulating brain neuroplasticity.
View Article and Find Full Text PDFNeurophysiol Clin
January 2025
Neuroscience and Human Genetics Department, Meyer Children's Hospital IRCCS, Full Member of European Reference Network on Rare and Complex Epilepsies, EpiCARE, viale Pieraccini 24, 50139, Florence, Italy; Neurofarba Department, University of Florence, viale Pieraccini 6, 50139, Florence, Italy.
Stereo-EEG is not just a diagnostic examination but a complex methodology, requiring an accurate synthesis of many data (anatomical, clinical, neurophysiological, cognitive, metabolic, and genetic). The implantation scheme is decided based on a hypothesis (or hypotheses) of epileptogenic zone localization. Subsequently, intracerebral electrical stimulation is used to define the extent of highly functional cortical regions and to reproduce the clinical symptoms and signs associated with seizures.
View Article and Find Full Text PDFLive human brain tissues provide unique opportunities for understanding the physiology and pathophysiology of synaptic transmission. Investigations have been limited to anatomy, electrophysiology, and protein localization-while crucial parameters such as synaptic vesicle dynamics were not visualized. Here we utilize zap-and-freeze time-resolved electron microscopy to overcome this hurdle.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!